Uses of Interface
net.finmath.time.TimeDiscretization
Packages that use TimeDiscretization
Package
Description
Integrated Assessment Models.
Experiments related to the DICE model.
Model components of the DICE model
Provides interface specification and implementation of curves, e.g., interest rate
curves like discount curves and forward curves.
Provides interface specification and implementation of volatility surfaces, e.g.,
interest rate volatility surfaces like (implied) caplet volatilities and swaption
volatilities.
Provides interface specification and implementation of products, e.g., calibration products.
Provides interface specification and implementation of curves, e.g., interest rate
curves like discount curves and forward curves.
Provides interface specification and implementation of products, e.g., calibration products.
Provides basic interfaces and classes used in Monte-Carlo models (like LIBOR market model or Monte-Carlo simulation
of a Black-Scholes model), e.g., the Monte-Carlo random variable and the Brownian motion.
Monte-Carlo models for asset value processes, like the Black Scholes model.
Products which may be valued using an
AssetModelMonteCarloSimulationModel
.Provides interfaces and classes needed to generate a Hybrid Asset LIBOR Market Model.
Provides interfaces and classes needed to generate interest rate models model (using numerical
algorithms from
net.finmath.montecarlo.process
.Interest rate models implementing
ProcessModel
e.g.Contains covariance models and their calibration as plug-ins for the LIBOR market model and volatility and correlation models which may be used to build a covariance model.
Provides classes which implement financial products which may be
valued using a
net.finmath.montecarlo.interestrate.LIBORModelMonteCarloSimulationModel
.Interfaced for stochastic processes and numerical schemes for stochastic processes (SDEs), like the Euler scheme.
Legacy classes related to Monte-Carlo simulation - used for teaching only.
Legacy classes related to Monte-Carlo simulation - used for teaching only.
Provides utilities for Java swing (used in finmath applets).
Provides interfaces and classes for time discretizations, tenors and (swap) schedule generation.
-
Uses of TimeDiscretization in net.finmath.climate.models
Methods in net.finmath.climate.models that return TimeDiscretization -
Uses of TimeDiscretization in net.finmath.climate.models.dice
Methods in net.finmath.climate.models.dice that return TimeDiscretizationConstructors in net.finmath.climate.models.dice with parameters of type TimeDiscretizationModifierConstructorDescriptionDICEModel(TimeDiscretization timeDiscretization, UnaryOperator<Double> abatementFunction)
DICEModel(TimeDiscretization timeDiscretization, UnaryOperator<Double> abatementFunction, UnaryOperator<Double> savingsRateFunction, double discountRate)
DICEModel(TimeDiscretization timeDiscretization, UnaryOperator<Double> abatementFunction, UnaryOperator<Double> savingsRateFunction, double discountRate, Map<String,Object> modelProperties)
Create the model. -
Uses of TimeDiscretization in net.finmath.climate.models.dice.submodels
Methods in net.finmath.climate.models.dice.submodels that return TimeDiscretizationModifier and TypeMethodDescriptionEmissionIndustrialIntensityFunction.getTimeDiscretization()
EvolutionOfCarbonConcentration.getTimeDiscretization()
EvolutionOfEmissionIndustrialIntensity.getTimeDiscretization()
EvolutionOfTemperature.getTimeDiscretization()
Constructors in net.finmath.climate.models.dice.submodels with parameters of type TimeDiscretizationModifierConstructorDescriptionEmissionIndustrialIntensityFunction(TimeDiscretization timeDiscretization)
EmissionIndustrialIntensityFunction(TimeDiscretization timeDiscretization, double emissionIntensityInitial, double emissionIntensityRateInitial, double emissionIntensityRateDecay)
The evolution of the emission intensityEvolutionOfCapital(TimeDiscretization timeDiscretization)
EvolutionOfCapital(TimeDiscretization timeDiscretization, double capitalDeprecation)
EvolutionOfCarbonConcentration(TimeDiscretization timeDiscretization)
EvolutionOfCarbonConcentration(TimeDiscretization timeDiscretization, Function<Integer,double[][]> transitionMatrices)
EvolutionOfEmissionIndustrialIntensity(TimeDiscretization timeDiscretization)
EvolutionOfEmissionIndustrialIntensity(TimeDiscretization timeDiscretization, double emissionIntensityInitial, double emissionIntensityRateInitial, double emissionIntensityRateDecay)
The evolution of the emission intensityEvolutionOfPopulation(TimeDiscretization timeDiscretization)
EvolutionOfPopulation(TimeDiscretization timeDiscretization, double populationAsymptotic, double populationGrowth)
EvolutionOfProductivity(TimeDiscretization timeDiscretization)
EvolutionOfProductivity(TimeDiscretization timeDiscretization, double productivityGrowthRateInitial, double productivityGrowthRateDecayRate)
The evolution of the productivity (economy) \( A(t_{i+1}) = A(t_{i}) / (1 - ga * \exp(- deltaA * t))^{\frac{\delta t}{5}} \)EvolutionOfTemperature(TimeDiscretization timeDiscretization)
EvolutionOfTemperature(TimeDiscretization timeDiscretization, Function<Integer,double[][]> transitionMatrices, double forcingToTemp)
-
Uses of TimeDiscretization in net.finmath.marketdata.model.curves
Methods in net.finmath.marketdata.model.curves with parameters of type TimeDiscretizationModifier and TypeMethodDescriptionstatic DiscountCurve
DiscountCurveInterpolation.createDiscountFactorsFromForwardRates(String name, TimeDiscretization tenor, double[] forwardRates)
Create a discount curve from given time discretization and forward rates. -
Uses of TimeDiscretization in net.finmath.marketdata.model.volatilities
Methods in net.finmath.marketdata.model.volatilities that return TimeDiscretizationModifier and TypeMethodDescriptionSwaptionATMMarketDataFromArray.getOptionMaturities()
SwaptionMarketData.getOptionMaturities()
SwaptionATMMarketDataFromArray.getTenor()
SwaptionMarketData.getTenor()
Constructors in net.finmath.marketdata.model.volatilities with parameters of type TimeDiscretizationModifierConstructorDescriptionCapletVolatilitiesParametricFourParameterPicewiseConstant(String name, LocalDate referenceDate, double a, double b, double c, double d, TimeDiscretization timeDiscretization)
Create a model with parameters a,b,c,d.SwaptionATMMarketDataFromArray(ForwardCurve forwardCurve, DiscountCurve discountCurve, TimeDiscretization optionMatruities, TimeDiscretization tenor, double swapPeriodLength, double[][] impliedVolatilities)
-
Uses of TimeDiscretization in net.finmath.marketdata.products
Methods in net.finmath.marketdata.products with parameters of type TimeDiscretizationModifier and TypeMethodDescriptionstatic double
Swap.getForwardSwapRate(TimeDiscretization fixTenor, TimeDiscretization floatTenor, ForwardCurve forwardCurve)
static double
Swap.getForwardSwapRate(TimeDiscretization fixTenor, TimeDiscretization floatTenor, ForwardCurve forwardCurve, DiscountCurve discountCurve)
static double
SwapAnnuity.getSwapAnnuity(TimeDiscretization tenor, DiscountCurve discountCurve)
Function to calculate an (idealized) swap annuity for a given schedule and discount curve.static double
SwapAnnuity.getSwapAnnuity(TimeDiscretization tenor, ForwardCurve forwardCurve)
Function to calculate an (idealized) single curve swap annuity for a given schedule and forward curve. -
Uses of TimeDiscretization in net.finmath.marketdata2.model.curves
Methods in net.finmath.marketdata2.model.curves with parameters of type TimeDiscretizationModifier and TypeMethodDescriptionstatic DiscountCurveInterface
DiscountCurveInterpolation.createDiscountFactorsFromForwardRates(String name, TimeDiscretization tenor, RandomVariable[] forwardRates)
Create a discount curve from given time discretization and forward rates. -
Uses of TimeDiscretization in net.finmath.marketdata2.products
Methods in net.finmath.marketdata2.products with parameters of type TimeDiscretizationModifier and TypeMethodDescriptionstatic RandomVariable
Swap.getForwardSwapRate(TimeDiscretization fixTenor, TimeDiscretization floatTenor, ForwardCurveInterface forwardCurve)
static RandomVariable
Swap.getForwardSwapRate(TimeDiscretization fixTenor, TimeDiscretization floatTenor, ForwardCurveInterface forwardCurve, DiscountCurveInterface discountCurve)
static RandomVariable
SwapAnnuity.getSwapAnnuity(TimeDiscretization tenor, DiscountCurveInterface discountCurve)
Function to calculate an (idealized) swap annuity for a given schedule and discount curve.static RandomVariable
SwapAnnuity.getSwapAnnuity(TimeDiscretization tenor, ForwardCurveInterface forwardCurve)
Function to calculate an (idealized) single curve swap annuity for a given schedule and forward curve. -
Uses of TimeDiscretization in net.finmath.montecarlo
Methods in net.finmath.montecarlo that return TimeDiscretizationModifier and TypeMethodDescriptionBrownianBridge.getTimeDiscretization()
BrownianMotion.getTimeDiscretization()
Returns the time discretization used for this set of time-discrete Brownian increments.BrownianMotionFromMersenneRandomNumbers.getTimeDiscretization()
BrownianMotionFromRandomNumberGenerator.getTimeDiscretization()
BrownianMotionView.getTimeDiscretization()
BrownianMotionWithControlVariate.getTimeDiscretization()
CorrelatedBrownianMotion.getTimeDiscretization()
GammaProcess.getTimeDiscretization()
IndependentIncrements.getTimeDiscretization()
Returns the time discretization used for this set of time-discrete Brownian increments.IndependentIncrementsFromICDF.getTimeDiscretization()
JumpProcessIncrements.getTimeDiscretization()
MertonJumpProcess.getTimeDiscretization()
MonteCarloSimulationModel.getTimeDiscretization()
Returns the timeDiscretizationFromArray.VarianceGammaProcess.getTimeDiscretization()
Methods in net.finmath.montecarlo with parameters of type TimeDiscretizationModifier and TypeMethodDescriptionBrownianBridge.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
BrownianMotion.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
Return a new object implementing BrownianMotion having the same specifications as this object but a different time discretization.BrownianMotionFromMersenneRandomNumbers.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
BrownianMotionFromRandomNumberGenerator.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
BrownianMotionView.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
BrownianMotionWithControlVariate.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
CorrelatedBrownianMotion.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
GammaProcess.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
IndependentIncrements.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
Return a new object implementing BrownianMotion having the same specifications as this object but a different time discretization.IndependentIncrementsFromICDF.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
JumpProcessIncrements.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
MertonJumpProcess.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
VarianceGammaProcess.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
Constructors in net.finmath.montecarlo with parameters of type TimeDiscretizationModifierConstructorDescriptionBrownianBridge(TimeDiscretization timeDiscretization, int numberOfPaths, int seed, RandomVariable[] start, RandomVariable[] end)
Construct a Brownian bridge, bridging from a given start to a given end.BrownianBridge(TimeDiscretization timeDiscretization, int numberOfPaths, int seed, RandomVariable start, RandomVariable end)
Construct a Brownian bridge, bridging from a given start to a given end.BrownianMotionFromMersenneRandomNumbers(TimeDiscretization timeDiscretization, int numberOfFactors, int numberOfPaths, int seed)
Construct a Brownian motion.BrownianMotionFromMersenneRandomNumbers(TimeDiscretization timeDiscretization, int numberOfFactors, int numberOfPaths, int seed, RandomVariableFactory randomVariableFactory)
Construct a Brownian motion.BrownianMotionFromRandomNumberGenerator(TimeDiscretization timeDiscretization, int numberOfFactors, int numberOfPaths, RandomNumberGenerator randomNumberGenerator)
Construct a Brownian motion.BrownianMotionFromRandomNumberGenerator(TimeDiscretization timeDiscretization, int numberOfFactors, int numberOfPaths, RandomNumberGenerator randomNumberGenerator, RandomVariableFactory randomVariableFactory)
Construct a Brownian motion.BrownianMotionLazyInit(TimeDiscretization timeDiscretization, int numberOfFactors, int numberOfPaths, int seed)
Deprecated.Construct a Brownian motion.BrownianMotionLazyInit(TimeDiscretization timeDiscretization, int numberOfFactors, int numberOfPaths, int seed, RandomVariableFactory randomVariableFactory)
Deprecated.Construct a Brownian motion.GammaProcess(TimeDiscretization timeDiscretization, int numberOfFactors, int numberOfPaths, int seed, double shape)
Construct a Gamma process with a given shape parameter.GammaProcess(TimeDiscretization timeDiscretization, int numberOfFactors, int numberOfPaths, int seed, double shape, double scale)
Construct a Gamma process with a given shape parameter.IndependentIncrementsFromICDF(TimeDiscretization timeDiscretization, int numberOfFactors, int numberOfPaths, int seed, IntFunction<IntFunction<DoubleUnaryOperator>> inverseCumulativeDistributionFunctions)
Construct the simulation of independet increments.IndependentIncrementsFromICDF(TimeDiscretization timeDiscretization, int numberOfFactors, int numberOfPaths, int seed, IntFunction<IntFunction<DoubleUnaryOperator>> inverseCumulativeDistributionFunctions, RandomVariableFactory randomVariableFactory)
Construct the simulation of independent increments.JumpProcessIncrements(TimeDiscretization timeDiscretization, double[] jumpIntensities, int numberOfPaths, int seed)
Construct a jump process.JumpProcessIncrements(TimeDiscretization timeDiscretization, double[] jumpIntensities, int numberOfPaths, int seed, RandomVariableFactory randomVariableFactory)
Construct a jump process.MertonJumpProcess(double jumpIntensity, double jumpSizeMean, double jumpSizeStDev, TimeDiscretization timeDiscretization, int numberOfPaths, int seed)
Constructs a Merton Jump Process for Monte Carlo simulation.VarianceGammaProcess(double sigma, double nu, double theta, TimeDiscretization timeDiscretization, int numberOfFactors, int numberOfPaths, int seed)
-
Uses of TimeDiscretization in net.finmath.montecarlo.assetderivativevaluation
Methods in net.finmath.montecarlo.assetderivativevaluation that return TimeDiscretizationModifier and TypeMethodDescriptionMonteCarloAssetModel.getTimeDiscretization()
MonteCarloMertonModel.getTimeDiscretization()
MonteCarloMultiAssetBlackScholesModel.getTimeDiscretization()
MonteCarloVarianceGammaModel.getTimeDiscretization()
Constructors in net.finmath.montecarlo.assetderivativevaluation with parameters of type TimeDiscretizationModifierConstructorDescriptionMonteCarloBlackScholesModel(TimeDiscretization timeDiscretization, int numberOfPaths, double initialValue, double riskFreeRate, double volatility)
Create a Monte-Carlo simulation using given time discretization.MonteCarloMertonModel(TimeDiscretization timeDiscretization, int numberOfPaths, int seed, double initialValue, double riskFreeRate, double volatility, double jumpIntensity, double jumpSizeMean, double jumpSizeStDev)
Create a Monte-Carlo simulation using given time discretization and given parameters.MonteCarloMertonModel(TimeDiscretization timeDiscretization, int numberOfPaths, int seed, double initialValue, double riskFreeRate, double volatility, double jumpIntensity, double jumpSizeMean, double jumpSizeStDev, RandomVariableFactory randomVariableFactory)
Create a Monte-Carlo simulation using given time discretization and given parameters.MonteCarloMultiAssetBlackScholesModel(TimeDiscretization timeDiscretization, int numberOfPaths, double[] initialValues, double riskFreeRate, double[] volatilities, double[][] correlations)
Create a Monte-Carlo simulation using given time discretization.MonteCarloMultiAssetBlackScholesModel(TimeDiscretization timeDiscretization, int numberOfPaths, int seed, double[] initialValues, double riskFreeRate, double[] volatilities, double[][] correlations)
Create a Monte-Carlo simulation using given time discretization.MonteCarloVarianceGammaModel(TimeDiscretization timeDiscretization, int numberOfPaths, int seed, double initialValue, double riskFreeRate, double sigma, double theta, double nu)
Create a Monte Carlo simulation using a given time discretization. -
Uses of TimeDiscretization in net.finmath.montecarlo.assetderivativevaluation.products
Methods in net.finmath.montecarlo.assetderivativevaluation.products that return TimeDiscretizationModifier and TypeMethodDescriptionAsianOption.getTimesForAveraging()
Returns the TimeDiscretization used for averaging in the asian option.Constructors in net.finmath.montecarlo.assetderivativevaluation.products with parameters of type TimeDiscretizationModifierConstructorDescriptionAsianOption(double maturity, double strike, TimeDiscretization timesForAveraging)
Construct a product representing an Asian option on an asset S (where S the asset with index 0 from the model - single asset case).AsianOption(double maturity, double strike, TimeDiscretization timesForAveraging, Integer underlyingIndex)
Construct a product representing an Asian option on an asset S (where S the asset with index 0 from the model - single asset case).LocalRiskMinimizingHedgePortfolio(AbstractAssetMonteCarloProduct productToHedge, AssetModelMonteCarloSimulationModel modelUsedForHedging, TimeDiscretization timeDiscretizationForRebalancing, int numberOfBins)
Construction of a variance minimizing hedge portfolio. -
Uses of TimeDiscretization in net.finmath.montecarlo.hybridassetinterestrate
Methods in net.finmath.montecarlo.hybridassetinterestrate that return TimeDiscretizationModifier and TypeMethodDescriptionHybridAssetLIBORModelMonteCarloSimulationFromModels.getLiborPeriodDiscretization()
CrossCurrencyLIBORMarketModelFromModels.getTimeDiscretization()
HybridAssetLIBORModelMonteCarloSimulationFromModels.getTimeDiscretization()
-
Uses of TimeDiscretization in net.finmath.montecarlo.interestrate
Methods in net.finmath.montecarlo.interestrate that return TimeDiscretizationModifier and TypeMethodDescriptionLIBORModel.getLiborPeriodDiscretization()
The tenor time discretization of the forward rate curve.LIBORModelMonteCarloSimulationModel.getLiborPeriodDiscretization()
Returns the libor period discretization as time discretization representing start and end dates of periods.LIBORMonteCarloSimulationFromLIBORModel.getLiborPeriodDiscretization()
LIBORMonteCarloSimulationFromTermStructureModel.getLiborPeriodDiscretization()
LIBORMonteCarloSimulationFromLIBORModel.getTimeDiscretization()
LIBORMonteCarloSimulationFromTermStructureModel.getTimeDiscretization()
TermStructureMonteCarloSimulationFromTermStructureModel.getTimeDiscretization()
Methods in net.finmath.montecarlo.interestrate with parameters of type TimeDiscretizationModifier and TypeMethodDescriptiondouble[][][]
LIBORMarketModel.getIntegratedLIBORCovariance(TimeDiscretization timeDiscretization)
Returns the integrated instantaneous log-forward rate covariance, i.e., \( \int_{0}^{t_i} \mathrm{d} \log(L_{j}) \mathrm{d} \log(L_{k}) \mathrm{d}t \). -
Uses of TimeDiscretization in net.finmath.montecarlo.interestrate.models
Methods in net.finmath.montecarlo.interestrate.models that return TimeDiscretizationModifier and TypeMethodDescriptionHullWhiteModel.getLiborPeriodDiscretization()
HullWhiteModelWithConstantCoeff.getLiborPeriodDiscretization()
HullWhiteModelWithDirectSimulation.getLiborPeriodDiscretization()
HullWhiteModelWithShiftExtension.getLiborPeriodDiscretization()
LIBORMarketModelFromCovarianceModel.getLiborPeriodDiscretization()
LIBORMarketModelStandard.getLiborPeriodDiscretization()
Methods in net.finmath.montecarlo.interestrate.models with parameters of type TimeDiscretizationModifier and TypeMethodDescriptiondouble[][][]
LIBORMarketModelFromCovarianceModel.getIntegratedLIBORCovariance(TimeDiscretization simulationTimeDiscretization)
double[][][]
LIBORMarketModelStandard.getIntegratedLIBORCovariance(TimeDiscretization simulationTimeDiscretization)
LIBORMarketModelWithTenorRefinement.getLIBORForStateVariable(TimeDiscretization liborPeriodDiscretization, RandomVariable[] stateVariables, double periodStart, double periodEnd)
LIBORMarketModelWithTenorRefinement.getStateVariableForPeriod(TimeDiscretization liborPeriodDiscretization, RandomVariable[] stateVariables, double periodStart, double periodEnd)
static HullWhiteModel
HullWhiteModel.of(RandomVariableFactory randomVariableFactory, TimeDiscretization liborPeriodDiscretization, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, ShortRateVolatilityModel volatilityModel, CalibrationProduct[] calibrationProducts, Map<String,Object> properties)
Creates a Hull-White model which implementsLIBORMarketModel
.LIBORMarketModelFromCovarianceModel.of(TimeDiscretization liborPeriodDiscretization, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, RandomVariableFactory randomVariableFactory, LIBORCovarianceModel covarianceModel, CalibrationProduct[] calibrationProducts, Map<String,?> properties)
Creates a LIBOR Market Model for given covariance with a calibration (if calibration items are given).Constructors in net.finmath.montecarlo.interestrate.models with parameters of type TimeDiscretizationModifierConstructorDescriptionHullWhiteModel(RandomVariableFactory randomVariableFactory, TimeDiscretization liborPeriodDiscretization, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, ShortRateVolatilityModel volatilityModel, Map<String,Object> properties)
Creates a Hull-White model which implementsLIBORMarketModel
.HullWhiteModel(TimeDiscretization liborPeriodDiscretization, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, ShortRateVolatilityModel volatilityModel, Map<String,Object> properties)
Creates a Hull-White model which implementsLIBORMarketModel
.HullWhiteModelWithConstantCoeff(TimeDiscretization liborPeriodDiscretization, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, double meanReversion, double volatility, Map<String,?> properties)
Creates a Hull-White model which implementsLIBORMarketModel
.HullWhiteModelWithDirectSimulation(TimeDiscretization liborPeriodDiscretization, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, ShortRateVolatilityModel volatilityModel, Map<String,?> properties)
Creates a Hull-White model which implementsLIBORMarketModel
.HullWhiteModelWithShiftExtension(TimeDiscretization liborPeriodDiscretization, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, ShortRateVolatilityModel volatilityModel, Map<String,?> properties)
Creates a Hull-White model which implementsLIBORMarketModel
.LIBORMarketModelFromCovarianceModel(TimeDiscretization liborPeriodDiscretization, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, LIBORCovarianceModel covarianceModel, CalibrationProduct[] calibrationItems, Map<String,?> properties)
Deprecated.Use LIBORMarketModelFromCovarianceModel.of() instead.LIBORMarketModelFromCovarianceModel(TimeDiscretization liborPeriodDiscretization, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, RandomVariableFactory randomVariableFactory, LIBORCovarianceModel covarianceModel, Map<String,?> properties)
Creates a LIBOR Market Model for given covariance.LIBORMarketModelFromCovarianceModel(TimeDiscretization liborPeriodDiscretization, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, RandomVariableFactory randomVariableFactory, LIBORCovarianceModel covarianceModel, CalibrationProduct[] calibrationProducts, Map<String,?> properties)
Creates a LIBOR Market Model for given covariance.LIBORMarketModelFromCovarianceModel(TimeDiscretization liborPeriodDiscretization, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, LIBORCovarianceModel covarianceModel)
Creates a LIBOR Market Model for given covariance.LIBORMarketModelFromCovarianceModel(TimeDiscretization liborPeriodDiscretization, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, LIBORCovarianceModel covarianceModel, SwaptionMarketData swaptionMarketData)
Creates a LIBOR Market Model for given covariance.LIBORMarketModelFromCovarianceModel(TimeDiscretization liborPeriodDiscretization, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, LIBORCovarianceModel covarianceModel, SwaptionMarketData swaptionMarketData, Map<String,?> properties)
Creates a LIBOR Market Model for given covariance.LIBORMarketModelFromCovarianceModel(TimeDiscretization liborPeriodDiscretization, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, LIBORCovarianceModel covarianceModel, CalibrationProduct[] calibrationItems, Map<String,?> properties)
Deprecated.Use LIBORMarketModelFromCovarianceModel.of() instead.LIBORMarketModelFromCovarianceModel(TimeDiscretization liborPeriodDiscretization, ForwardCurve forwardRateCurve, LIBORCovarianceModel covarianceModel)
Creates a LIBOR Market Model for given covariance.LIBORMarketModelFromCovarianceModel(TimeDiscretization liborPeriodDiscretization, ForwardCurve forwardRateCurve, LIBORCovarianceModel covarianceModel, SwaptionMarketData swaptionMarketData)
Creates a LIBOR Market Model using a given covariance model and calibrating this model to given swaption volatility data.LIBORMarketModelStandard(TimeDiscretization liborPeriodDiscretization, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, LIBORCovarianceModel covarianceModel)
Creates a LIBOR Market Model for given covariance.LIBORMarketModelStandard(TimeDiscretization liborPeriodDiscretization, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, LIBORCovarianceModel covarianceModel, SwaptionMarketData swaptionMarketData)
Creates a LIBOR Market Model for given covariance.LIBORMarketModelStandard(TimeDiscretization liborPeriodDiscretization, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, LIBORCovarianceModel covarianceModel, CalibrationProduct[] calibrationProducts)
Creates a LIBOR Market Model for given covariance.LIBORMarketModelStandard(TimeDiscretization liborPeriodDiscretization, ForwardCurve forwardRateCurve, LIBORCovarianceModel covarianceModel)
Creates a LIBOR Market Model for given covariance.LIBORMarketModelStandard(TimeDiscretization liborPeriodDiscretization, ForwardCurve forwardRateCurve, LIBORCovarianceModel covarianceModel, SwaptionMarketData swaptionMarketData)
Creates a LIBOR Market Model using a given covariance model and calibrating this model to given swaption volatility data.LIBORMarketModelWithTenorRefinement(TimeDiscretization[] liborPeriodDiscretizations, Integer[] numberOfDiscretizationIntervals, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, TermStructureCovarianceModel covarianceModel, CalibrationProduct[] calibrationProducts, Map<String,?> properties)
Creates a model for given covariance. -
Uses of TimeDiscretization in net.finmath.montecarlo.interestrate.models.covariance
Methods in net.finmath.montecarlo.interestrate.models.covariance that return TimeDiscretizationModifier and TypeMethodDescriptionAbstractLIBORCovarianceModel.getLiborPeriodDiscretization()
LIBORCorrelationModel.getLiborPeriodDiscretization()
LIBORCovarianceModel.getLiborPeriodDiscretization()
The forward rate time discretization associated with this model (defines the components).LIBORVolatilityModel.getLiborPeriodDiscretization()
LIBORVolatilityModelPiecewiseConstant.getSimulationTimeDiscretization()
AbstractLIBORCovarianceModel.getTimeDiscretization()
AbstractShortRateVolatilityModel.getTimeDiscretization()
The simulation time discretization associated with this model.LIBORCorrelationModel.getTimeDiscretization()
LIBORCovarianceModel.getTimeDiscretization()
The simulation time discretization associated with this model.LIBORVolatilityModel.getTimeDiscretization()
ShortRateVolatilityModel.getTimeDiscretization()
Returns the time discretization \( \{ t_{i} \} \) associated with the piecewise constant functions.ShortRateVolatilityModelAsGiven.getTimeDiscretization()
ShortRateVolatilityModelHoLee.getTimeDiscretization()
LIBORVolatilityModelPiecewiseConstant.getTimeToMaturityDiscretization()
ShortRateVolatilityModelPiecewiseConstant.getVolatilityTimeDiscretization()
Returns the time discretization used for the picewise constant volatility and mean reversion.Methods in net.finmath.montecarlo.interestrate.models.covariance with parameters of type TimeDiscretizationModifier and TypeMethodDescriptionTermStructCovarianceModelFromLIBORCovarianceModel.getFactorLoading(double time, double periodStart, double periodEnd, TimeDiscretization periodDiscretization, RandomVariable[] realizationAtTimeIndex, TermStructureModel model)
TermStructCovarianceModelFromLIBORCovarianceModelParametric.getFactorLoading(double time, double periodStart, double periodEnd, TimeDiscretization periodDiscretization, RandomVariable[] realizationAtTimeIndex, TermStructureModel model)
TermStructureFactorLoadingsModel.getFactorLoading(double time, double periodStart, double periodEnd, TimeDiscretization periodDiscretization, RandomVariable[] realizationAtTimeIndex, TermStructureModel model)
Return the factor loading for a given time and a term structure period.Constructors in net.finmath.montecarlo.interestrate.models.covariance with parameters of type TimeDiscretizationModifierConstructorDescriptionAbstractLIBORCovarianceModel(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, int numberOfFactors)
Constructor consuming time discretizations, which are handled by the super class.AbstractLIBORCovarianceModelParametric(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, int numberOfFactors)
Constructor consuming time discretizations, which are handled by the super class.AbstractShortRateVolatilityModel(TimeDiscretization timeDiscretization)
Constructor consuming time discretizations, which are handled by the super class.AbstractShortRateVolatilityModelParametric(TimeDiscretization timeDiscretization)
Constructor consuming time discretization.LIBORCorrelationModel(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization)
LIBORCorrelationModelExponentialDecay(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, int numberOfFactors, double a)
Create a correlation model with an exponentially decaying correlation structure and the given number of factors.LIBORCorrelationModelExponentialDecay(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, int numberOfFactors, double a, boolean isCalibrateable)
Create a correlation model with an exponentially decaying correlation structure and the given number of factors.LIBORCorrelationModelThreeParameterExponentialDecay(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, int numberOfFactors, double a, double b, double c, boolean isCalibrateable)
LIBORCovarianceModelBH(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, int numberOfFactors)
Create model with default parameter.LIBORCovarianceModelBH(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, int numberOfFactors, double[] parameter)
Create model.LIBORCovarianceModelExponentialForm5Param(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, int numberOfFactors)
LIBORCovarianceModelExponentialForm5Param(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, int numberOfFactors, double[] parameters)
LIBORCovarianceModelExponentialForm5Param(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, int numberOfFactors, RandomVariable[] parameters)
LIBORCovarianceModelExponentialForm7Param(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, int numberOfFactors)
LIBORCovarianceModelFromVolatilityAndCorrelation(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, LIBORVolatilityModel volatilityModel, LIBORCorrelationModel correlationModel)
LIBORVolatilityModel(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization)
LIBORVolatilityModelFourParameterExponentialForm(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double a, double b, double c, double d, boolean isCalibrateable)
Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + dLIBORVolatilityModelFourParameterExponentialForm(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, RandomVariable a, RandomVariable b, RandomVariable c, RandomVariable d, boolean isCalibrateable)
Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + dLIBORVolatilityModelFourParameterExponentialForm(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double a, double b, double c, double d, boolean isCalibrateable)
Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + dLIBORVolatilityModelFourParameterExponentialForm(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, RandomVariable a, RandomVariable b, RandomVariable c, RandomVariable d, boolean isCalibrateable)
Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + dLIBORVolatilityModelFourParameterExponentialFormIntegrated(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double a, double b, double c, double d, boolean isCalibrateable)
Creates the volatility model \[ \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) \exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.} \]LIBORVolatilityModelFourParameterExponentialFormIntegrated(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double a, double b, double c, double d, boolean isCalibrateable)
Creates the volatility model \[ \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) \exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.} \]LIBORVolatilityModelFourParameterExponentialFormIntegrated(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, RandomVariable a, RandomVariable b, RandomVariable c, RandomVariable d, boolean isCalibrateable)
Creates the volatility model \[ \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) \exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.} \]LIBORVolatilityModelFromGivenMatrix(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double[][] volatility)
Creates a simple volatility model using given piece-wise constant values on a given discretization grid.LIBORVolatilityModelFromGivenMatrix(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double[][] volatility, boolean isCalibrateable)
Creates a simple volatility model using given piece-wise constant values on a given discretization grid.LIBORVolatilityModelFromGivenMatrix(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, RandomVariable[][] volatility, boolean isCalibrateable)
Creates a simple volatility model using given piece-wise constant values on a given discretization grid.LIBORVolatilityModelFromGivenMatrix(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double[][] volatility)
Creates a simple volatility model using given piece-wise constant values on a given discretization grid.LIBORVolatilityModelFromGivenMatrix(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, RandomVariable[][] volatility)
Creates a simple volatility model using given piece-wise constant values on a given discretization grid.LIBORVolatilityModelFromGivenMatrix(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, RandomVariable[][] volatility, boolean isCalibrateable)
Creates a simple volatility model using given piece-wise constant values on a given discretization grid.LIBORVolatilityModelMaturityDependentFourParameterExponentialForm(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double[] a, double[] b, double[] c, double[] d)
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double a, double b, double c, double d)
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double[] a, double[] b, double[] c, double[] d)
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double a, double b, double c, double d)
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, RandomVariable[] parameterA, RandomVariable[] parameterB, RandomVariable[] parameterC, RandomVariable[] parameterD)
LIBORVolatilityModelPiecewiseConstant(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization simulationTimeDiscretization, TimeDiscretization timeToMaturityDiscretization, double[][] volatility, boolean isCalibrateable)
LIBORVolatilityModelPiecewiseConstant(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization simulationTimeDiscretization, TimeDiscretization timeToMaturityDiscretization, double[] volatility, boolean isCalibrateable)
LIBORVolatilityModelPiecewiseConstant(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization simulationTimeDiscretization, TimeDiscretization timeToMaturityDiscretization, double volatility)
LIBORVolatilityModelPiecewiseConstant(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization simulationTimeDiscretization, TimeDiscretization timeToMaturityDiscretization, double[] volatility)
LIBORVolatilityModelPiecewiseConstant(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization simulationTimeDiscretization, TimeDiscretization timeToMaturityDiscretization, double[] volatility, boolean isCalibrateable)
LIBORVolatilityModelPiecewiseConstant(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization simulationTimeDiscretization, TimeDiscretization timeToMaturityDiscretization, double volatility, boolean isCalibrateable)
LIBORVolatilityModelPiecewiseConstant(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization simulationTimeDiscretization, TimeDiscretization timeToMaturityDiscretization, RandomVariable[] volatility, boolean isCalibrateable)
LIBORVolatilityModelTimeHomogenousPiecewiseConstant(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization timeToMaturityDiscretization, double[] volatility)
Create a piecewise constant volatility model, where \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.LIBORVolatilityModelTimeHomogenousPiecewiseConstant(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization timeToMaturityDiscretization, RandomVariable[] volatility)
Create a piecewise constant volatility model, where \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.LIBORVolatilityModelTimeHomogenousPiecewiseConstant(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization timeToMaturityDiscretization, double[] volatility)
Create a piecewise constant volatility model, where \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.LIBORVolatilityModelTimeHomogenousPiecewiseConstant(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization timeToMaturityDiscretization, RandomVariable[] volatility)
Create a piecewise constant volatility model, where \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.LIBORVolatilityModelTwoParameterExponentialForm(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double a, double b, boolean isCalibrateable)
Creates the volatility model σi(tj) = a * exp(-b (Ti-tj))LIBORVolatilityModelTwoParameterExponentialForm(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, RandomVariable a, RandomVariable b, boolean isCalibrateable)
Creates the volatility model σi(tj) = a * exp(-b (Ti-tj))LIBORVolatilityModelTwoParameterExponentialForm(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double a, double b)
Creates the volatility model σi(tj) = a * exp(-b (Ti-tj))ShortRateVolatilityModelAsGiven(TimeDiscretization timeDiscretization, double[] volatility, double[] meanReversion)
ShortRateVolatilityModelPiecewiseConstant(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization volatilityTimeDiscretization, double[] volatility, double[] meanReversion, boolean isVolatilityCalibrateable)
ShortRateVolatilityModelPiecewiseConstant(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization volatilityTimeDiscretization, double[] volatility, double[] meanReversion, boolean isVolatilityCalibrateable, boolean isMeanReversionCalibrateable)
ShortRateVolatilityModelPiecewiseConstant(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization volatilityTimeDiscretization, RandomVariable[] volatility, RandomVariable[] meanReversion, boolean isVolatilityCalibrateable)
ShortRateVolatilityModelPiecewiseConstant(RandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization volatilityTimeDiscretization, RandomVariable[] volatility, RandomVariable[] meanReversion, boolean isVolatilityCalibrateable, boolean isMeanReversionCalibrateable)
TermStructureTenorTimeScalingPicewiseConstant(TimeDiscretization timeDiscretization, double[] parameters)
-
Uses of TimeDiscretization in net.finmath.montecarlo.interestrate.products
Methods in net.finmath.montecarlo.interestrate.products that return TimeDiscretizationModifier and TypeMethodDescriptionBermudanSwaptionFromSwapSchedules.getProcessTimeDiscretization(LocalDateTime referenceDate)
SwaptionFromSwapSchedules.getProcessTimeDiscretization(LocalDateTime referenceDate)
Methods in net.finmath.montecarlo.interestrate.products with parameters of type TimeDiscretizationModifier and TypeMethodDescriptionSwaptionFactory.createSwaption(String className, double swaprate, TimeDiscretization swapTenor, String valueUnitAsString)
SwaptionAnalyticApproximation.getLogSwaprateDerivative(TimeDiscretization liborPeriodDiscretization, DiscountCurve discountCurve, ForwardCurve forwardCurve)
This function calculate the partial derivative d log(S) / d log(Lk) for a given swap rate with respect to a vector of forward rates (on a given forward rate tenor).SwaptionAnalyticApproximationRebonato.getLogSwaprateDerivative(TimeDiscretization liborPeriodDiscretization, DiscountCurve discountCurve, ForwardCurve forwardCurve, double[] swapTenor)
This function calculate the partial derivative d log(S) / d log(Lk) for a given swap rate with respect to a vector of forward rates (on a given forward rate tenor).SwaptionSingleCurveAnalyticApproximation.getLogSwaprateDerivative(TimeDiscretization liborPeriodDiscretization, ForwardCurve forwardCurve, double[] swapTenor)
This function calculate the partial derivative d log(S) / d log(Lk) for a given swap rate with respect to a vector of forward rates (on a given forward rate tenor).SwaptionGeneralizedAnalyticApproximation.getLogSwapRateDerivative(TimeDiscretization liborPeriodDiscretization, DiscountCurve discountCurve, ForwardCurve forwardCurve)
This function calculate the partial derivative d log(S) / d log(Lk) for a given swap rate with respect to a vector of forward rates (on a given forward rate tenor).SwaptionGeneralizedAnalyticApproximation.getSwapRateDerivative(TimeDiscretization liborPeriodDiscretization, AnalyticModel model, DiscountCurve discountCurve, ForwardCurve forwardCurve)
Returns the derivative of the swap rate (associated with this swap) with respect to the forward rates dS/dL_{i}.SwaprateCovarianceAnalyticApproximation.getValues(double evaluationTime, TimeDiscretization timeDiscretization, LIBORMarketModel model)
Calculates the approximated integrated instantaneous covariance of two swap rates, using the approximation d log(S(t))/d log(L(t)) = d log(S(0))/d log(L(0)).SwaptionAnalyticApproximation.getValues(double evaluationTime, TimeDiscretization timeDiscretization, LIBORMarketModel model)
Calculates the approximated integrated instantaneous variance of the swap rate, using the approximation d log(S(t))/d log(L(t)) = d log(S(0))/d log(L(0)).SwaptionAnalyticApproximationRebonato.getValues(double evaluationTime, TimeDiscretization timeDiscretization, LIBORMarketModel model)
Calculates the approximated integrated instantaneous variance of the swap rate, using the approximation d log(S(t))/d log(L(t)) = d log(S(0))/d log(L(0)).SwaptionGeneralizedAnalyticApproximation.getValues(double evaluationTime, TimeDiscretization timeDiscretization, LIBORMarketModel model)
Calculates the approximated integrated instantaneous variance of the swap rate, using the approximation d S/d L (t) = d S/d L (0).SwaptionSingleCurveAnalyticApproximation.getValues(double evaluationTime, TimeDiscretization timeDiscretization, LIBORMarketModel model)
Calculates the approximated integrated instantaneous variance of the swap rate, using the approximation d log(S(t))/d log(L(t)) = d log(S(0))/d log(L(0)).Constructors in net.finmath.montecarlo.interestrate.products with parameters of type TimeDiscretizationModifierConstructorDescriptionSwaption(double exerciseDate, TimeDiscretization swapTenor, double swaprate)
Creates a swaption using a TimeDiscretizationFromArraySwaptionAnalyticApproximation(double swaprate, TimeDiscretization swapTenor)
Create an analytic swaption approximation product for log normal forward rate model.SwaptionAnalyticApproximationRebonato(double swaprate, TimeDiscretization swapTenor)
Create an analytic swaption approximation product for log normal forward rate model.SwaptionGeneralizedAnalyticApproximation(double swaprate, TimeDiscretization swapTenor, SwaptionGeneralizedAnalyticApproximation.StateSpace stateSpace)
Create an analytic swaption approximation product for log normal forward rate model.SwaptionSimple(double swaprate, TimeDiscretization swapTenor)
Note: It is implicitly assumed that swapTenor[0] is the exercise date (no forward starting).SwaptionSingleCurve(double exerciseDate, TimeDiscretization swapTenor, double swaprate)
Creates a swaption using a TimeDiscretizationFromArraySwaptionSingleCurveAnalyticApproximation(double swaprate, TimeDiscretization swapTenor)
Create an analytic swaption approximation product for log normal forward rate model. -
Uses of TimeDiscretization in net.finmath.montecarlo.process
Methods in net.finmath.montecarlo.process that return TimeDiscretizationModifier and TypeMethodDescriptionProcessTimeDiscretizationProvider.getProcessTimeDiscretization(LocalDateTime referenceDate)
Returns a suggestion for a time discretization which is suited (or required) for the processing (e.g valuation) of this object.LinearInterpolatedTimeDiscreteProcess.getTimeDiscretization()
MonteCarloProcessFromProcessModel.getTimeDiscretization()
Process.getTimeDiscretization()
Constructors in net.finmath.montecarlo.process with parameters of type TimeDiscretizationModifierConstructorDescriptionMonteCarloProcessFromProcessModel(TimeDiscretization timeDiscretization, ProcessModel model)
Create a discretization scheme / a time discrete process. -
Uses of TimeDiscretization in net.finmath.montecarlo.templatemethoddesign
Methods in net.finmath.montecarlo.templatemethoddesign that return TimeDiscretizationConstructors in net.finmath.montecarlo.templatemethoddesign with parameters of type TimeDiscretizationModifierConstructorDescriptionLogNormalProcess(TimeDiscretization timeDiscretization, int numberOfComponents, int numberOfPaths)
Create a simulation of log normal process.LogNormalProcess(TimeDiscretization timeDiscretization, int numberOfComponents, int numberOfFactors, int numberOfPaths, int seed)
Create a simulation of log normal process. -
Uses of TimeDiscretization in net.finmath.montecarlo.templatemethoddesign.assetderivativevaluation
Constructors in net.finmath.montecarlo.templatemethoddesign.assetderivativevaluation with parameters of type TimeDiscretizationModifierConstructorDescriptionMonteCarloBlackScholesModel2(TimeDiscretization timeDiscretization, int numberOfPaths, double initialValue, double riskFreeRate, double volatility)
Create a Monte-Carlo simulation using given time discretization.MonteCarloBlackScholesModel2(TimeDiscretization timeDiscretization, int numberOfPaths, double initialValue, double riskFreeRate, double volatility, int seed)
Create a Monte-Carlo simulation using given time discretization. -
Uses of TimeDiscretization in net.finmath.swing
Methods in net.finmath.swing with parameters of type TimeDiscretizationModifier and TypeMethodDescriptionvoid
JNumberField.setAdmissibleValues(TimeDiscretization timeDiscretization)
-
Uses of TimeDiscretization in net.finmath.time
Classes in net.finmath.time that implement TimeDiscretizationModifier and TypeClassDescriptionclass
Implements a time discretization based on dates using a reference date and an daycount convention / year fraction.class
This class represents a set of discrete points in time.Methods in net.finmath.time that return TimeDiscretizationModifier and TypeMethodDescriptiondefault TimeDiscretization
TimeDiscretization.filter(DoublePredicate timesToKeep)
Create a newTimeDiscretization
with a subset ofthis
time discretization.TimeDiscretizationFromArray.filter(DoublePredicate timesToKeep)
TimeDiscretization.getTimeShiftedTimeDiscretization(double timeShift)
Return a new time discretization where all time points have been shifted by a given time shift.TimeDiscretizationFromArray.getTimeShiftedTimeDiscretization(double timeShift)
TimeDiscretization.intersect(TimeDiscretization that)
Returns the intersection of this time discretization with another one.TimeDiscretizationFromArray.intersect(TimeDiscretization that)
TimeDiscretization.union(TimeDiscretization that)
Returns the union of this time discretization with another one.TimeDiscretizationFromArray.union(TimeDiscretization that)
Methods in net.finmath.time with parameters of type TimeDiscretizationModifier and TypeMethodDescriptionTimeDiscretization.intersect(TimeDiscretization that)
Returns the intersection of this time discretization with another one.TimeDiscretizationFromArray.intersect(TimeDiscretization that)
TimeDiscretization.union(TimeDiscretization that)
Returns the union of this time discretization with another one.TimeDiscretizationFromArray.union(TimeDiscretization that)
Constructors in net.finmath.time with parameters of type TimeDiscretizationModifierConstructorDescriptionRegularSchedule(TimeDiscretization timeDiscretization)
Create a schedule from a time discretization.