- All Known Subinterfaces:
LIBORMarketModel
,LIBORModel
,ShortRateModel
,TermStructureModel
- All Known Implementing Classes:
AbstractProcessModel
,BachelierModel
,BlackScholesModel
,BlackScholesModelWithCurves
,BlackScholesModelWithStockNumeraire
,DisplacedLognomalModel
,HestonModel
,HullWhiteModel
,HullWhiteModelWithConstantCoeff
,HullWhiteModelWithDirectSimulation
,HullWhiteModelWithShiftExtension
,InhomogeneousDisplacedLognomalModel
,InhomogenousBachelierModel
,LIBORMarketModelFromCovarianceModel
,LIBORMarketModelStandard
,LIBORMarketModelWithTenorRefinement
,MertonModel
,MonteCarloMultiAssetBlackScholesModel
,MultiAssetBlackScholesModel
,VarianceGammaModel
public interface ProcessModel
The interface for a model of a stochastic process X where
X(t) = f(t,Y(t)) and
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \]
Examples:
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \]
- The value of Y(0) is provided by the method
getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. - The value of μ is provided by the method
getDrift(net.finmath.montecarlo.process.MonteCarloProcess, int, net.finmath.stochastic.RandomVariable[], net.finmath.stochastic.RandomVariable[])
. - The value λj is provided by the method
getFactorLoading(net.finmath.montecarlo.process.MonteCarloProcess, int, int, net.finmath.stochastic.RandomVariable[])
. - The function f is provided by the method
applyStateSpaceTransform(net.finmath.montecarlo.process.MonteCarloProcess, int, int, net.finmath.stochastic.RandomVariable)
.
Examples:
- The Black Scholes model can be modeled by S = X = Y (i.e. f is the identity) and μ1 = r S and λ1,1 = σ S.
- Alternatively, the Black Scholes model can be modeled by S = X = exp(Y) (i.e. f is exp) and μ1 = r - 0.5 σ σ and λ1,1 = σ.
- Version:
- 2.0
- Author:
- Christian Fries
-
Method Summary
Modifier and TypeMethodDescriptionapplyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)
Applies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.default RandomVariable
applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)
Applies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.getCloneWithModifiedData(Map<String,Object> dataModified)
Returns a clone of this model where the specified properties have been modified.getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)
This method has to be implemented to return the drift, i.e.getFactorLoading(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex)
This method has to be implemented to return the factor loadings, i.e.getInitialState(MonteCarloProcess process)
Returns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.int
Returns the number of componentsint
Returns the number of factors m, i.e., the number of independent Brownian drivers.getNumeraire(MonteCarloProcess process, double time)
Return the numeraire at a given time index.getRandomVariableForConstant(double value)
Return a random variable initialized with a constant using the models random variable factory.Returns the model's date corresponding to the time discretization's \( t = 0 \).
-
Method Details
-
getReferenceDate
LocalDateTime getReferenceDate()Returns the model's date corresponding to the time discretization's \( t = 0 \). Note: Currently not all models provide a reference date. This will change in future versions.- Returns:
- The model's date corresponding to the time discretization's \( t = 0 \).
-
getNumberOfComponents
int getNumberOfComponents()Returns the number of components- Returns:
- The number of components
-
applyStateSpaceTransform
RandomVariable applyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Applies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex
- The time index (related to the model times discretization).componentIndex
- The component index i.randomVariable
- The state random variable Yi.- Returns:
- New random variable holding the result of the state space transformation.
-
applyStateSpaceTransformInverse
default RandomVariable applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Applies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex
- The time index (related to the model times discretization).componentIndex
- The component index i.randomVariable
- The state random variable Xi.- Returns:
- New random variable holding the result of the state space transformation.
-
getInitialState
Returns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.- Returns:
- The initial value of the state variable of the process Y(t=0).
-
getNumeraire
Return the numeraire at a given time index. Note: The random variable returned is a defensive copy and may be modified.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.time
- The time t for which the numeraire N(t) should be returned.- Returns:
- The numeraire at the specified time as
RandomVariable
- Throws:
CalculationException
- Thrown if the valuation fails, specific cause may be available via thecause()
method.
-
getDrift
RandomVariable[] getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)This method has to be implemented to return the drift, i.e. the coefficient vector
μ = (μ1, ..., μn) such that X = f(Y) and
dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
in an m-factor model. Here j denotes index of the component of the resulting process. Since the model is provided only on a time discretization, the method may also (should try to) return the drift as \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \).- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex
- The time index (related to the model times discretization).realizationAtTimeIndex
- The given realization at timeIndexrealizationPredictor
- The given realization attimeIndex+1
or null if no predictor is available.- Returns:
- The drift or average drift from timeIndex to timeIndex+1, i.e. \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \) (or a suitable approximation).
-
getNumberOfFactors
int getNumberOfFactors()Returns the number of factors m, i.e., the number of independent Brownian drivers.- Returns:
- The number of factors.
-
getFactorLoading
RandomVariable[] getFactorLoading(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex)This method has to be implemented to return the factor loadings, i.e. the coefficient vector
λj = (λ1,j, ..., λm,j) such that X = f(Y) and
dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
in an m-factor model. Here j denotes index of the component of the resulting process.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex
- The time index (related to the model times discretization).componentIndex
- The index j of the driven component.realizationAtTimeIndex
- The realization of X at the time corresponding to timeIndex (in order to implement local and stochastic volatlity models).- Returns:
- The factor loading for given factor and component.
-
getRandomVariableForConstant
Return a random variable initialized with a constant using the models random variable factory.- Parameters:
value
- The constant value.- Returns:
- A new random variable initialized with a constant value.
-
getCloneWithModifiedData
ProcessModel getCloneWithModifiedData(Map<String,Object> dataModified) throws CalculationExceptionReturns a clone of this model where the specified properties have been modified. Note that there is no guarantee that a model reacts on a specification of a properties in the parameter mapdataModified
. If data is provided which is ignored by the model no exception may be thrown.- Parameters:
dataModified
- Key-value-map of parameters to modify.- Returns:
- A clone of this model (or this model if no parameter was modified).
- Throws:
CalculationException
- Thrown when the model could not be created.
-