Module net.finmath.lib
Class LIBORMarketModelWithTenorRefinement
java.lang.Object
net.finmath.montecarlo.model.AbstractProcessModel
net.finmath.montecarlo.interestrate.models.LIBORMarketModelWithTenorRefinement
- All Implemented Interfaces:
TermStructureModel,ProcessModel
public class LIBORMarketModelWithTenorRefinement
extends AbstractProcessModel
implements TermStructureModel
Implements a discretized Heath-Jarrow-Morton model / LIBOR market model with dynamic tenor refinement, see
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2884699.
In its default case the class specifies a multi-factor LIBOR market model, that is \( L_{j} = \frac{1}{T_{j+1}-T_{j}} ( exp(Y_{j}) - 1 ) \), where \[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \]
The model uses an
The model uses an
Note that λ may still depend on L (through a local volatility model).
The simulation is performed under spot measure, that is, the numeraire is \( N(T_{i}) = \prod_{j=0}^{i-1} (1 + L(T_{j},T_{j+1};T_{j}) (T_{j+1}-T_{j})) \). The map
The main task of this class is to calculate the risk-neutral drift and the corresponding numeraire given the covariance model. The calibration of the covariance structure is not part of this class.
In its default case the class specifies a multi-factor LIBOR market model, that is \( L_{j} = \frac{1}{T_{j+1}-T_{j}} ( exp(Y_{j}) - 1 ) \), where \[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \]
The model uses an
AbstractLIBORCovarianceModel for the specification of
(λ1,j,...,λm,j) as a covariance model.
See ProcessModel for details on the implemented interface
The model uses an
AbstractLIBORCovarianceModel as a covariance model.
If the covariance model is of type AbstractLIBORCovarianceModelParametric
a calibration to swaptions can be performed.
Note that λ may still depend on L (through a local volatility model).
The simulation is performed under spot measure, that is, the numeraire is \( N(T_{i}) = \prod_{j=0}^{i-1} (1 + L(T_{j},T_{j+1};T_{j}) (T_{j+1}-T_{j})) \). The map
properties allows to configure the model. The following keys may be used:
-
liborCap: An optionalDoublevalue applied as a cap to the LIBOR rates. May be used to limit the simulated valued to prevent values attaining POSITIVE_INFINITY and numerical problems. To disable the cap, setliborCaptoDouble.POSITIVE_INFINITY.
The main task of this class is to calculate the risk-neutral drift and the corresponding numeraire given the covariance model. The calibration of the covariance structure is not part of this class.
- Version:
- 1.2
- Author:
- Christian Fries
- See Also:
The interface for numerical schemes.,The interface for models provinding parameters to numerical schemes., https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2884699
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic class -
Constructor Summary
ConstructorsConstructorDescriptionLIBORMarketModelWithTenorRefinement(TimeDiscretization[] liborPeriodDiscretizations, Integer[] numberOfDiscretizationIntervals, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, TermStructureCovarianceModel covarianceModel, CalibrationProduct[] calibrationProducts, Map<String,?> properties)Creates a model for given covariance. -
Method Summary
Modifier and TypeMethodDescriptionapplyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Applies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Applies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.clone()Return the associated analytic model, a collection of market date object like discount curve, forward curve and volatility surfaces.getCloneWithModifiedData(Map<String,Object> dataModified)Create a new object implementing TermStructureModel, using the new data.Returns the term structure covariance model.Return the discount curve associated the forwards.getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)Return the complete vector of the drift for the time index timeIndex, given that current state is realizationAtTimeIndex.getFactorLoading(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex)This method has to be implemented to return the factor loadings, i.e.getForwardRate(MonteCarloProcess process, double time, double periodStart, double periodEnd)Returns the time \( t \) forward rate on the models forward curve.Return the initial forward rate curve.getInitialState(MonteCarloProcess process)Returns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.getLIBOR(MonteCarloProcess process, int timeIndex, double periodStart, double periodEnd)getLIBORForStateVariable(TimeDiscretization liborPeriodDiscretization, RandomVariable[] stateVariables, double periodStart, double periodEnd)intReturns the number of componentsintReturns the number of factors m, i.e., the number of independent Brownian drivers.intgetNumeraire(MonteCarloProcess process, double time)Return the numeraire at a given time.getRandomVariableForConstant(double value)Return a random variable initialized with a constant using the models random variable factory.getStateVariable(MonteCarloProcess process, int timeIndex, double periodStart, double periodEnd)getStateVariableForPeriod(TimeDiscretization liborPeriodDiscretization, RandomVariable[] stateVariables, double periodStart, double periodEnd)Methods inherited from class net.finmath.montecarlo.model.AbstractProcessModel
getInitialValue, getReferenceDateMethods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface net.finmath.montecarlo.model.ProcessModel
getReferenceDateMethods inherited from interface net.finmath.montecarlo.interestrate.TermStructureModel
getForwardDiscountBond, getLIBOR
-
Constructor Details
-
LIBORMarketModelWithTenorRefinement
public LIBORMarketModelWithTenorRefinement(TimeDiscretization[] liborPeriodDiscretizations, Integer[] numberOfDiscretizationIntervals, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, TermStructureCovarianceModel covarianceModel, CalibrationProduct[] calibrationProducts, Map<String,?> properties) throws CalculationExceptionCreates a model for given covariance. Creates a discretized Heath-Jarrow-Morton model / LIBOR market model with dynamic tenor refinement, see https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2884699.
If calibrationItems in non-empty and the covariance model is a parametric model, the covariance will be replaced by a calibrate version of the same model, i.e., the LIBOR Market Model will be calibrated.
The mappropertiesallows to configure the model. The following keys may be used:-
liborCap: An optionalDoublevalue applied as a cap to the LIBOR rates. May be used to limit the simulated valued to prevent values attaining POSITIVE_INFINITY and numerical problems. To disable the cap, setliborCaptoDouble.POSITIVE_INFINITY. -
calibrationParameters: Possible values:-
Map<String,Object>a parameter map with the following key/value pairs:-
accuracy:Doublespecifying the required solver accuracy. -
maxIterations:Integerspecifying the maximum iterations for the solver.
-
-
- Parameters:
liborPeriodDiscretizations- A vector of tenor discretizations of the interest rate curve into forward rates (tenor structure), finest first.numberOfDiscretizationIntervals- A vector of number of periods to be taken from the liborPeriodDiscretizations.analyticModel- The associated analytic model of this model (containing the associated market data objects like curve).forwardRateCurve- The initial values for the forward rates.discountCurve- The discount curve to use. This will create an LMM model with a deterministic zero-spread discounting adjustment.covarianceModel- The covariance model to use.calibrationProducts- The vector of calibration items (a union of a product, target value and weight) for the objective function sum weight(i) * (modelValue(i)-targetValue(i).properties- Key value map specifying properties likemeasureandstateSpace.- Throws:
CalculationException- Thrown if the valuation fails, specific cause may be available via thecause()method.
-
-
-
Method Details
-
getNumeraire
public RandomVariable getNumeraire(MonteCarloProcess process, double time) throws CalculationExceptionReturn the numeraire at a given time. The numeraire is provided for interpolated points. If requested on points which are not part of the tenor discretization, the numeraire uses a linear interpolation of the reciprocal value. See ISBN 0470047224 for details.- Specified by:
getNumerairein interfaceProcessModel- Parameters:
time- Time time t for which the numeraire should be returned N(t).process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.- Returns:
- The numeraire at the specified time as
RandomVariable - Throws:
CalculationException- Thrown if the valuation fails, specific cause may be available via thecause()method.
-
getInitialState
Description copied from interface:ProcessModelReturns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.- Specified by:
getInitialStatein interfaceProcessModel- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.- Returns:
- The initial value of the state variable of the process Y(t=0).
-
getDrift
public RandomVariable[] getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)Return the complete vector of the drift for the time index timeIndex, given that current state is realizationAtTimeIndex. The drift will be zero for rates being already fixed. The method currently provides the drift for eitherMeasure.SPOTorMeasure.TERMINAL- depending how the model object was constructed. ForMeasure.TERMINALthe j-th entry of the return value is the random variable \[ \mu_{j}^{\mathbb{Q}^{P(T_{n})}}(t) \ = \ - \mathop{\sum_{l\geq j+1}}_{l\leq n-1} \frac{\delta_{l}}{1+\delta_{l} L_{l}(t)} (\lambda_{j}(t) \cdot \lambda_{l}(t)) \] and forMeasure.SPOTthe j-th entry of the return value is the random variable \[ \mu_{j}^{\mathbb{Q}^{N}}(t) \ = \ \sum_{m(t) < l\leq j} \frac{\delta_{l}}{1+\delta_{l} L_{l}(t)} (\lambda_{j}(t) \cdot \lambda_{l}(t)) \] where \( \lambda_{j} \) is the vector for factor loadings for the j-th component of the stochastic process (that is, the diffusion part is \( \sum_{k=1}^m \lambda_{j,k} \mathrm{d}W_{k} \)). Note: The scalar product of the factor loadings determines the instantaneous covariance. If the model is written in log-coordinates (using exp as a state space transform), we find \(\lambda_{j} \cdot \lambda_{l} = \sum_{k=1}^m \lambda_{j,k} \lambda_{l,k} = \sigma_{j} \sigma_{l} \rho_{j,l} \). If the model is written without a state space transformation (in its orignial coordinates) then \(\lambda_{j} \cdot \lambda_{l} = \sum_{k=1}^m \lambda_{j,k} \lambda_{l,k} = L_{j} L_{l} \sigma_{j} \sigma_{l} \rho_{j,l} \).- Specified by:
getDriftin interfaceProcessModel- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- Time index i for which the drift should be returned μ(ti).realizationAtTimeIndex- Time current forward rate vector at time index i which should be used in the calculation.realizationPredictor- The given realization attimeIndex+1or null if no predictor is available.- Returns:
- The drift vector μ(ti) as
RandomVariableFromDoubleArray[] - See Also:
The calculation of the drift is consistent with the calculation of the numeraire in,getNumeraire.The factor loading \( \lambda_{j,k} \).
-
getFactorLoading
public RandomVariable[] getFactorLoading(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex)Description copied from interface:ProcessModelThis method has to be implemented to return the factor loadings, i.e. the coefficient vector
λj = (λ1,j, ..., λm,j) such that X = f(Y) and
dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
in an m-factor model. Here j denotes index of the component of the resulting process.- Specified by:
getFactorLoadingin interfaceProcessModel- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).componentIndex- The index j of the driven component.realizationAtTimeIndex- The realization of X at the time corresponding to timeIndex (in order to implement local and stochastic volatlity models).- Returns:
- The factor loading for given factor and component.
-
applyStateSpaceTransform
public RandomVariable applyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Description copied from interface:ProcessModelApplies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.- Specified by:
applyStateSpaceTransformin interfaceProcessModel- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).componentIndex- The component index i.randomVariable- The state random variable Yi.- Returns:
- New random variable holding the result of the state space transformation.
-
applyStateSpaceTransformInverse
public RandomVariable applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Description copied from interface:ProcessModelApplies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.- Specified by:
applyStateSpaceTransformInversein interfaceProcessModel- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).componentIndex- The component index i.randomVariable- The state random variable Xi.- Returns:
- New random variable holding the result of the state space transformation.
-
getRandomVariableForConstant
Description copied from interface:ProcessModelReturn a random variable initialized with a constant using the models random variable factory.- Specified by:
getRandomVariableForConstantin interfaceProcessModel- Parameters:
value- The constant value.- Returns:
- A new random variable initialized with a constant value.
-
getStateVariableForPeriod
public RandomVariable getStateVariableForPeriod(TimeDiscretization liborPeriodDiscretization, RandomVariable[] stateVariables, double periodStart, double periodEnd) -
getLIBORForStateVariable
public RandomVariable getLIBORForStateVariable(TimeDiscretization liborPeriodDiscretization, RandomVariable[] stateVariables, double periodStart, double periodEnd) -
getStateVariable
public RandomVariable getStateVariable(MonteCarloProcess process, int timeIndex, double periodStart, double periodEnd) -
getForwardRate
public RandomVariable getForwardRate(MonteCarloProcess process, double time, double periodStart, double periodEnd)Description copied from interface:TermStructureModelReturns the time \( t \) forward rate on the models forward curve. Note: It is guaranteed that the random variable returned by this method is \( \mathcal{F}_{t} ) \)-measurable.- Specified by:
getForwardRatein interfaceTermStructureModel- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.time- The evaluation time.periodStart- The period start of the forward rate.periodEnd- The period end of the forward rate.- Returns:
- The forward rate.
-
getLIBOR
public RandomVariable getLIBOR(MonteCarloProcess process, int timeIndex, double periodStart, double periodEnd) -
getNumberOfComponents
public int getNumberOfComponents()Description copied from interface:ProcessModelReturns the number of components- Specified by:
getNumberOfComponentsin interfaceProcessModel- Returns:
- The number of components
-
getNumberOfFactors
public int getNumberOfFactors()Description copied from interface:ProcessModelReturns the number of factors m, i.e., the number of independent Brownian drivers.- Specified by:
getNumberOfFactorsin interfaceProcessModel- Returns:
- The number of factors.
-
getNumberOfLibors
public int getNumberOfLibors() -
clone
-
getAnalyticModel
Description copied from interface:TermStructureModelReturn the associated analytic model, a collection of market date object like discount curve, forward curve and volatility surfaces.- Specified by:
getAnalyticModelin interfaceTermStructureModel- Returns:
- The associated analytic model.
-
getDiscountCurve
Description copied from interface:TermStructureModelReturn the discount curve associated the forwards.- Specified by:
getDiscountCurvein interfaceTermStructureModel- Returns:
- the discount curve associated the forwards.
-
getForwardRateCurve
Description copied from interface:TermStructureModelReturn the initial forward rate curve.- Specified by:
getForwardRateCurvein interfaceTermStructureModel- Returns:
- the forward rate curve
-
getCloneWithModifiedData
public TermStructureModel getCloneWithModifiedData(Map<String,Object> dataModified) throws CalculationExceptionDescription copied from interface:TermStructureModelCreate a new object implementing TermStructureModel, using the new data.- Specified by:
getCloneWithModifiedDatain interfaceProcessModel- Specified by:
getCloneWithModifiedDatain interfaceTermStructureModel- Parameters:
dataModified- A map with values to be used in constructions (keys are identical to parameter names of the constructors).- Returns:
- A new object implementing TermStructureModel, using the new data.
- Throws:
CalculationException- Thrown if the valuation fails, specific cause may be available via thecause()method.
-
getCovarianceModel
Returns the term structure covariance model.- Returns:
- the term structure covariance model.
-