Module net.finmath.lib
Class BachelierModel
java.lang.Object
net.finmath.montecarlo.model.AbstractProcessModel
net.finmath.montecarlo.assetderivativevaluation.models.BachelierModel
- All Implemented Interfaces:
- ProcessModel
This class implements a (variant of the) Bachelier model, that is,
 it provides the drift and volatility specification
 and performs the calculation of the numeraire (consistent with the dynamics, i.e. the drift).
 The model is
 \[
        d(S/N) = \sigma dW, \quad S(0) = S_{0},
 \]
 \[
        dN = r N dt, \quad N(0) = N_{0},
 \]
 Note: This implies the dynamic
 \[
        dS = r S dt + \sigma exp(r t) dW, \quad S(0) = S_{0},
 \]
 for \( S \). For The model
 \[
        dS = r S dt + \sigma dW, \quad S(0) = S_{0},
 \]
 see 
InhomogenousBachelierModel.
 The model's implied Bachelier volatility for a given maturity T is
 volatility * Math.exp(riskFreeRate * optionMaturity)
 The class provides the model of S to an MonteCarloProcessMonteCarloProcess for the notation.- Version:
- 1.0
- Author:
- Christian Fries
- See Also:
- The interface for numerical schemes.,- The interface for models provinding parameters to numerical schemes.
- 
Constructor SummaryConstructorsConstructorDescriptionBachelierModel(double initialValue, double riskFreeRate, double volatility)Create a Monte-Carlo simulation using given time discretization.BachelierModel(RandomVariableFactory randomVariableFactory, RandomVariable initialValue, RandomVariable riskFreeRate, RandomVariable volatility)Create a Monte-Carlo simulation using given time discretization.
- 
Method SummaryModifier and TypeMethodDescriptionapplyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Applies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Applies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.getCloneWithModifiedData(Map<String,Object> dataModified)Returns a clone of this model where the specified properties have been modified.getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)This method has to be implemented to return the drift, i.e.getFactorLoading(MonteCarloProcess process, int timeIndex, int component, RandomVariable[] realizationAtTimeIndex)This method has to be implemented to return the factor loadings, i.e.getImpliedBachelierVolatility(double maturity)getInitialState(MonteCarloProcess process)Returns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.Returns the initial value parameter of this model.intReturns the number of componentsintReturns the number of factors m, i.e., the number of independent Brownian drivers.getNumeraire(MonteCarloProcess process, double time)Return the numeraire at a given time index.getRandomVariableForConstant(double value)Return a random variable initialized with a constant using the models random variable factory.Returns the risk free rate parameter of this model.Returns the volatility parameter of this model.toString()Methods inherited from class net.finmath.montecarlo.model.AbstractProcessModelgetInitialValue, getReferenceDate
- 
Constructor Details- 
BachelierModelpublic BachelierModel(RandomVariableFactory randomVariableFactory, RandomVariable initialValue, RandomVariable riskFreeRate, RandomVariable volatility)Create a Monte-Carlo simulation using given time discretization.- Parameters:
- randomVariableFactory- The RandomVariableFactory used to generate random variables from constants.
- initialValue- Spot value.
- riskFreeRate- The risk free rate.
- volatility- The volatility.
 
- 
BachelierModelpublic BachelierModel(double initialValue, double riskFreeRate, double volatility)Create a Monte-Carlo simulation using given time discretization.- Parameters:
- initialValue- Spot value.
- riskFreeRate- The risk free rate.
- volatility- The volatility.
 
 
- 
- 
Method Details- 
getInitialStateDescription copied from interface:ProcessModelReturns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.- Parameters:
- process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
- Returns:
- The initial value of the state variable of the process Y(t=0).
 
- 
getDriftpublic RandomVariable[] getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)Description copied from interface:ProcessModelThis method has to be implemented to return the drift, i.e. the coefficient vector
 μ = (μ1, ..., μn) such that X = f(Y) and
 dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
 in an m-factor model. Here j denotes index of the component of the resulting process. Since the model is provided only on a time discretization, the method may also (should try to) return the drift as \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \).- Parameters:
- process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
- timeIndex- The time index (related to the model times discretization).
- realizationAtTimeIndex- The given realization at timeIndex
- realizationPredictor- The given realization at- timeIndex+1or null if no predictor is available.
- Returns:
- The drift or average drift from timeIndex to timeIndex+1, i.e. \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \) (or a suitable approximation).
 
- 
getFactorLoadingpublic RandomVariable[] getFactorLoading(MonteCarloProcess process, int timeIndex, int component, RandomVariable[] realizationAtTimeIndex)Description copied from interface:ProcessModelThis method has to be implemented to return the factor loadings, i.e. the coefficient vector
 λj = (λ1,j, ..., λm,j) such that X = f(Y) and
 dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
 in an m-factor model. Here j denotes index of the component of the resulting process.- Parameters:
- process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
- timeIndex- The time index (related to the model times discretization).
- component- The index j of the driven component.
- realizationAtTimeIndex- The realization of X at the time corresponding to timeIndex (in order to implement local and stochastic volatlity models).
- Returns:
- The factor loading for given factor and component.
 
- 
applyStateSpaceTransformpublic RandomVariable applyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Description copied from interface:ProcessModelApplies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.- Parameters:
- process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
- timeIndex- The time index (related to the model times discretization).
- componentIndex- The component index i.
- randomVariable- The state random variable Yi.
- Returns:
- New random variable holding the result of the state space transformation.
 
- 
applyStateSpaceTransformInversepublic RandomVariable applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Description copied from interface:ProcessModelApplies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.- Parameters:
- process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
- timeIndex- The time index (related to the model times discretization).
- componentIndex- The component index i.
- randomVariable- The state random variable Xi.
- Returns:
- New random variable holding the result of the state space transformation.
 
- 
getNumeraireDescription copied from interface:ProcessModelReturn the numeraire at a given time index. Note: The random variable returned is a defensive copy and may be modified.- Parameters:
- process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
- time- The time t for which the numeraire N(t) should be returned.
- Returns:
- The numeraire at the specified time as RandomVariable
 
- 
getNumberOfComponentspublic int getNumberOfComponents()Description copied from interface:ProcessModelReturns the number of components- Returns:
- The number of components
 
- 
getNumberOfFactorspublic int getNumberOfFactors()Description copied from interface:ProcessModelReturns the number of factors m, i.e., the number of independent Brownian drivers.- Returns:
- The number of factors.
 
- 
getRandomVariableForConstantDescription copied from interface:ProcessModelReturn a random variable initialized with a constant using the models random variable factory.- Parameters:
- value- The constant value.
- Returns:
- A new random variable initialized with a constant value.
 
- 
getCloneWithModifiedDataDescription copied from interface:ProcessModelReturns a clone of this model where the specified properties have been modified. Note that there is no guarantee that a model reacts on a specification of a properties in the parameter mapdataModified. If data is provided which is ignored by the model no exception may be thrown.- Parameters:
- dataModified- Key-value-map of parameters to modify.
- Returns:
- A clone of this model (or this model if no parameter was modified).
 
- 
toString
- 
getInitialValueReturns the initial value parameter of this model.- Returns:
- Returns the initialValue
 
- 
getRiskFreeRateReturns the risk free rate parameter of this model.- Returns:
- Returns the riskFreeRate.
 
- 
getVolatilityReturns the volatility parameter of this model.- Returns:
- Returns the volatility.
 
- 
getImpliedBachelierVolatility
 
-