Module net.finmath.lib
Class InhomogeneousDisplacedLognomalModel
java.lang.Object
net.finmath.montecarlo.model.AbstractProcessModel
net.finmath.montecarlo.assetderivativevaluation.models.InhomogeneousDisplacedLognomalModel
- All Implemented Interfaces:
ProcessModel
This class implements an inhomogeneous displaced log-normal model, that is, it provides the drift and volatility specification
and performs the calculation of the numeraire (consistent with the dynamics, i.e. the drift).
The model is
\[
\mathrm{d}S = r S dt + \sigma (S + d) \mathrm{d}W, \quad S(0) = S_{0},
\]
\[
\mathrm{d}N = r N \mathrm{d}t, \quad N(0) = N_{0},
\]
Note that
\[
\mathrm{d}(S/N) = \sigma (S/N + d/N) \mathrm{d}W
\]
i.e.
\[
\mathrm{d}(S/N + d/N) = -r d/N dt + \sigma (S/N + d/N) \mathrm{d}W
\]
The class provides the model of S to an
MonteCarloProcess
via the specification of (via X = S/N+d/N)
\( S = f(X) = N X - d \), \( \mu = d \frac{exp(- r t_2) - exp(- r t_1)}{t_2-t_1} \), \( \lambda_{1,1} = \sigma X \),
of the SDE
\[
dX = \mu dt + \lambda_{1,1} dW, \quad X(0) = S_{0} + e,
\]
with \( N(0) = 1 \). See MonteCarloProcess
for the notation.- Version:
- 1.0
- Author:
- Christian Fries
- See Also:
The interface for numerical schemes.
,The interface for models provinding parameters to numerical schemes.
-
Constructor Summary
ConstructorsConstructorDescriptionInhomogeneousDisplacedLognomalModel(double initialValue, double riskFreeRate, double displacement, double volatility)
Create a blended normal/lognormal model.InhomogeneousDisplacedLognomalModel(double initialValue, double riskFreeRate, double displacement, double volatility, boolean isUseMilsteinCorrection)
Create a blended normal/lognormal model.InhomogeneousDisplacedLognomalModel(RandomVariableFactory randomVariableFactory, double initialValue, double riskFreeRate, double displacement, double volatility, boolean isUseMilsteinCorrection)
Create a blended normal/lognormal model.InhomogeneousDisplacedLognomalModel(RandomVariableFactory randomVariableFactory, RandomVariable initialValue, RandomVariable riskFreeRate, RandomVariable displacement, RandomVariable volatility, boolean isUseMilsteinCorrection)
Create a blended normal/lognormal model. -
Method Summary
Modifier and TypeMethodDescriptionapplyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)
Applies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)
Applies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.getCloneWithModifiedData(Map<String,Object> dataModified)
Returns a clone of this model where the specified properties have been modified.getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)
This method has to be implemented to return the drift, i.e.getFactorLoading(MonteCarloProcess process, int timeIndex, int component, RandomVariable[] realizationAtTimeIndex)
This method has to be implemented to return the factor loadings, i.e.getInitialState(MonteCarloProcess process)
Returns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.int
Returns the number of componentsint
Returns the number of factors m, i.e., the number of independent Brownian drivers.getNumeraire(MonteCarloProcess process, double time)
Return the numeraire at a given time index.getRandomVariableForConstant(double value)
Return a random variable initialized with a constant using the models random variable factory.Returns the risk free rate parameter of this model.Returns the volatility parameter of this model.toString()
Methods inherited from class net.finmath.montecarlo.model.AbstractProcessModel
getInitialValue, getReferenceDate
-
Constructor Details
-
InhomogeneousDisplacedLognomalModel
public InhomogeneousDisplacedLognomalModel(RandomVariableFactory randomVariableFactory, RandomVariable initialValue, RandomVariable riskFreeRate, RandomVariable displacement, RandomVariable volatility, boolean isUseMilsteinCorrection)Create a blended normal/lognormal model.- Parameters:
randomVariableFactory
- The RandomVariableFactory used to generate random variables from constants.initialValue
- Spot value.riskFreeRate
- The risk free rate.displacement
- The displacement parameter d.volatility
- The volatility.isUseMilsteinCorrection
- If true, a Milstein scheme correction is applied in the drift.
-
InhomogeneousDisplacedLognomalModel
public InhomogeneousDisplacedLognomalModel(RandomVariableFactory randomVariableFactory, double initialValue, double riskFreeRate, double displacement, double volatility, boolean isUseMilsteinCorrection)Create a blended normal/lognormal model.- Parameters:
randomVariableFactory
- The RandomVariableFactory used to generate random variables from constants.initialValue
- Spot value.riskFreeRate
- The risk free rate.displacement
- The displacement parameter d.volatility
- The volatility.isUseMilsteinCorrection
- If true, the drift will include the Milstein correction (making an Euler scheme a Milstein scheme).
-
InhomogeneousDisplacedLognomalModel
public InhomogeneousDisplacedLognomalModel(double initialValue, double riskFreeRate, double displacement, double volatility, boolean isUseMilsteinCorrection)Create a blended normal/lognormal model.- Parameters:
initialValue
- Spot value.riskFreeRate
- The risk free rate.displacement
- The displacement parameter d.volatility
- The volatility.isUseMilsteinCorrection
- If true, the drift will include the Milstein correction (making an Euler scheme a Milstein scheme).
-
InhomogeneousDisplacedLognomalModel
public InhomogeneousDisplacedLognomalModel(double initialValue, double riskFreeRate, double displacement, double volatility)Create a blended normal/lognormal model.- Parameters:
initialValue
- Spot value.riskFreeRate
- The risk free rate.displacement
- The displacement parameter d.volatility
- The volatility.
-
-
Method Details
-
getInitialState
Description copied from interface:ProcessModel
Returns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.- Returns:
- The initial value of the state variable of the process Y(t=0).
-
getDrift
public RandomVariable[] getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)Description copied from interface:ProcessModel
This method has to be implemented to return the drift, i.e. the coefficient vector
μ = (μ1, ..., μn) such that X = f(Y) and
dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
in an m-factor model. Here j denotes index of the component of the resulting process. Since the model is provided only on a time discretization, the method may also (should try to) return the drift as \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \).- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex
- The time index (related to the model times discretization).realizationAtTimeIndex
- The given realization at timeIndexrealizationPredictor
- The given realization attimeIndex+1
or null if no predictor is available.- Returns:
- The drift or average drift from timeIndex to timeIndex+1, i.e. \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \) (or a suitable approximation).
-
getFactorLoading
public RandomVariable[] getFactorLoading(MonteCarloProcess process, int timeIndex, int component, RandomVariable[] realizationAtTimeIndex)Description copied from interface:ProcessModel
This method has to be implemented to return the factor loadings, i.e. the coefficient vector
λj = (λ1,j, ..., λm,j) such that X = f(Y) and
dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
in an m-factor model. Here j denotes index of the component of the resulting process.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex
- The time index (related to the model times discretization).component
- The index j of the driven component.realizationAtTimeIndex
- The realization of X at the time corresponding to timeIndex (in order to implement local and stochastic volatlity models).- Returns:
- The factor loading for given factor and component.
-
applyStateSpaceTransform
public RandomVariable applyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Description copied from interface:ProcessModel
Applies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex
- The time index (related to the model times discretization).componentIndex
- The component index i.randomVariable
- The state random variable Yi.- Returns:
- New random variable holding the result of the state space transformation.
-
applyStateSpaceTransformInverse
public RandomVariable applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Description copied from interface:ProcessModel
Applies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex
- The time index (related to the model times discretization).componentIndex
- The component index i.randomVariable
- The state random variable Xi.- Returns:
- New random variable holding the result of the state space transformation.
-
getNumeraire
Description copied from interface:ProcessModel
Return the numeraire at a given time index. Note: The random variable returned is a defensive copy and may be modified.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.time
- The time t for which the numeraire N(t) should be returned.- Returns:
- The numeraire at the specified time as
RandomVariable
-
getNumberOfComponents
public int getNumberOfComponents()Description copied from interface:ProcessModel
Returns the number of components- Returns:
- The number of components
-
getNumberOfFactors
public int getNumberOfFactors()Description copied from interface:ProcessModel
Returns the number of factors m, i.e., the number of independent Brownian drivers.- Returns:
- The number of factors.
-
getRandomVariableForConstant
Description copied from interface:ProcessModel
Return a random variable initialized with a constant using the models random variable factory.- Parameters:
value
- The constant value.- Returns:
- A new random variable initialized with a constant value.
-
getCloneWithModifiedData
public InhomogeneousDisplacedLognomalModel getCloneWithModifiedData(Map<String,Object> dataModified)Description copied from interface:ProcessModel
Returns a clone of this model where the specified properties have been modified. Note that there is no guarantee that a model reacts on a specification of a properties in the parameter mapdataModified
. If data is provided which is ignored by the model no exception may be thrown.- Parameters:
dataModified
- Key-value-map of parameters to modify.- Returns:
- A clone of this model (or this model if no parameter was modified).
-
toString
-
getRandomVariableFactory
-
getInitialValue
-
getRiskFreeRate
Returns the risk free rate parameter of this model.- Returns:
- Returns the riskFreeRate.
-
getDisplacement
-
getVolatility
Returns the volatility parameter of this model.- Returns:
- Returns the volatility.
-