Module net.finmath.lib
Class VarianceGammaModel
java.lang.Object
net.finmath.montecarlo.model.AbstractProcessModel
net.finmath.montecarlo.assetderivativevaluation.models.VarianceGammaModel
- All Implemented Interfaces:
ProcessModel
This class implements a Variance Gamma Model, that is, it provides the drift and volatility specification
and performs the calculation of the numeraire (consistent with the dynamics, i.e. the drift).
The model is
\[
dS_t = r S dt + S dL, \quad S(0) = S_{0},
\]
\[
dN = r N dt, \quad N(0) = N_{0},
\]
where the process L is a
VarianceGammaProcess
.- Version:
- 1.0
- Author:
- Alessandro Gnoatto
- See Also:
The interface for numerical schemes.
,The interface for models provinding parameters to numerical schemes.
-
Constructor Summary
ConstructorsConstructorDescriptionVarianceGammaModel(double initialValue, double riskFreeRate, double sigma, double theta, double nu)
Construct a Variance Gamma model with constant rates for the forward price (i.e.VarianceGammaModel(double initialValue, double riskFreeRate, double discountRate, double sigma, double theta, double nu)
Construct a Variance Gamma model with constant rates for the forward price (i.e.VarianceGammaModel(double initialValue, DiscountCurve discountCurveForForwardRate, DiscountCurve discountCurveForDiscountRate, double sigma, double theta, double nu)
Construct a Variance Gamma model with discount curves for the forward price (i.e.VarianceGammaModel(double initialValue, DiscountCurve discountCurveForForwardRate, DiscountCurve discountCurveForDiscountRate, double sigma, double theta, double nu, RandomVariableFactory randomVariableFactory)
Construct a Variance Gamma model with discount curves for the forward price (i.e.VarianceGammaModel(VarianceGammaModelDescriptor descriptor)
Create the model from a descriptor.VarianceGammaModel(RandomVariable initialValue, DiscountCurve discountCurveForForwardRate, DiscountCurve discountCurveForDiscountRate, RandomVariable sigma, RandomVariable theta, RandomVariable nu, RandomVariableFactory randomVariableFactory)
Construct a Variance Gamma model with discount curves for the forward price (i.e.VarianceGammaModel(RandomVariable initialValue, RandomVariable riskFreeRate, RandomVariable discountRate, RandomVariable sigma, RandomVariable theta, RandomVariable nu, RandomVariableFactory randomVariableFactory)
Construct a Variance Gamma model with constant rates for the forward price (i.e. -
Method Summary
Modifier and TypeMethodDescriptionapplyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)
Applies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)
Applies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.getCloneWithModifiedData(Map<String,Object> dataModified)
Returns a clone of this model where the specified properties have been modified.getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)
This method has to be implemented to return the drift, i.e.getFactorLoading(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex)
This method has to be implemented to return the factor loadings, i.e.getInitialState(MonteCarloProcess process)
Returns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.getNu()
int
Returns the number of componentsint
Returns the number of factors m, i.e., the number of independent Brownian drivers.getNumeraire(MonteCarloProcess process, double time)
Return the numeraire at a given time index.getRandomVariableForConstant(double value)
Return a random variable initialized with a constant using the models random variable factory.getSigma()
getTheta()
toString()
Methods inherited from class net.finmath.montecarlo.model.AbstractProcessModel
getInitialValue, getReferenceDate
-
Constructor Details
-
VarianceGammaModel
public VarianceGammaModel(RandomVariable initialValue, DiscountCurve discountCurveForForwardRate, DiscountCurve discountCurveForDiscountRate, RandomVariable sigma, RandomVariable theta, RandomVariable nu, RandomVariableFactory randomVariableFactory)Construct a Variance Gamma model with discount curves for the forward price (i.e. repo rate minus dividend yield) and for discounting.- Parameters:
initialValue
- \( S_{0} \) - spot - initial value of SdiscountCurveForForwardRate
- The curve specifying \( t \mapsto exp(- r^{\text{c}}(t) \cdot t) \) - with \( r^{\text{c}}(t) \) the risk free ratediscountCurveForDiscountRate
- The curve specifying \( t \mapsto exp(- r^{\text{d}}(t) \cdot t) \) - with \( r^{\text{d}}(t) \) the discount ratesigma
- The parameter \( \sigma \).theta
- The parameter \( \theta \).nu
- The parameter \( \nu \).randomVariableFactory
- The factory to be used to construct random variables.
-
VarianceGammaModel
public VarianceGammaModel(RandomVariable initialValue, RandomVariable riskFreeRate, RandomVariable discountRate, RandomVariable sigma, RandomVariable theta, RandomVariable nu, RandomVariableFactory randomVariableFactory)Construct a Variance Gamma model with constant rates for the forward price (i.e. repo rate minus dividend yield) and for the discount curve.- Parameters:
initialValue
- \( S_{0} \) - spot - initial value of SriskFreeRate
- The constant risk free rate for the drift (repo rate of the underlying).discountRate
- The constant rate used for discounting.sigma
- The parameter \( \sigma \).theta
- The parameter \( \theta \).nu
- The parameter \( \nu \).randomVariableFactory
- The factory to be used to construct random variables.
-
VarianceGammaModel
Create the model from a descriptor.- Parameters:
descriptor
- A descriptor of the model.
-
VarianceGammaModel
public VarianceGammaModel(double initialValue, DiscountCurve discountCurveForForwardRate, DiscountCurve discountCurveForDiscountRate, double sigma, double theta, double nu, RandomVariableFactory randomVariableFactory)Construct a Variance Gamma model with discount curves for the forward price (i.e. repo rate minus dividend yield) and for discounting.- Parameters:
initialValue
- \( S_{0} \) - spot - initial value of SdiscountCurveForForwardRate
- The curve specifying \( t \mapsto exp(- r^{\text{c}}(t) \cdot t) \) - with \( r^{\text{c}}(t) \) the risk free ratediscountCurveForDiscountRate
- The curve specifying \( t \mapsto exp(- r^{\text{d}}(t) \cdot t) \) - with \( r^{\text{d}}(t) \) the discount ratesigma
- The parameter \( \sigma \).theta
- The parameter \( \theta \).nu
- The parameter \( \nu \).randomVariableFactory
- The factory to be used to construct random variables.
-
VarianceGammaModel
public VarianceGammaModel(double initialValue, DiscountCurve discountCurveForForwardRate, DiscountCurve discountCurveForDiscountRate, double sigma, double theta, double nu)Construct a Variance Gamma model with discount curves for the forward price (i.e. repo rate minus dividend yield) and for discounting.- Parameters:
initialValue
- \( S_{0} \) - spot - initial value of SdiscountCurveForForwardRate
- The curve specifying \( t \mapsto exp(- r^{\text{c}}(t) \cdot t) \) - with \( r^{\text{c}}(t) \) the risk free ratediscountCurveForDiscountRate
- The curve specifying \( t \mapsto exp(- r^{\text{d}}(t) \cdot t) \) - with \( r^{\text{d}}(t) \) the discount ratesigma
- The parameter \( \sigma \).theta
- The parameter \( \theta \).nu
- The parameter \( \nu \).
-
VarianceGammaModel
public VarianceGammaModel(double initialValue, double riskFreeRate, double discountRate, double sigma, double theta, double nu)Construct a Variance Gamma model with constant rates for the forward price (i.e. repo rate minus dividend yield) and for the discount curve.- Parameters:
initialValue
- \( S_{0} \) - spot - initial value of SriskFreeRate
- The constant risk free rate for the drift (repo rate of the underlying).discountRate
- The constant rate used for discounting.sigma
- The parameter \( \sigma \).theta
- The parameter \( \theta \).nu
- The parameter \( \nu \).
-
VarianceGammaModel
public VarianceGammaModel(double initialValue, double riskFreeRate, double sigma, double theta, double nu)Construct a Variance Gamma model with constant rates for the forward price (i.e. repo rate minus dividend yield) and for the discount curve.- Parameters:
initialValue
- \( S_{0} \) - spot - initial value of SriskFreeRate
- The constant risk free rate for the drift (repo rate of the underlying).sigma
- The parameter \( \sigma \).theta
- The parameter \( \theta \).nu
- The parameter \( \nu \).
-
-
Method Details
-
applyStateSpaceTransform
public RandomVariable applyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Description copied from interface:ProcessModel
Applies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex
- The time index (related to the model times discretization).componentIndex
- The component index i.randomVariable
- The state random variable Yi.- Returns:
- New random variable holding the result of the state space transformation.
-
applyStateSpaceTransformInverse
public RandomVariable applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Description copied from interface:ProcessModel
Applies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex
- The time index (related to the model times discretization).componentIndex
- The component index i.randomVariable
- The state random variable Xi.- Returns:
- New random variable holding the result of the state space transformation.
-
getInitialState
Description copied from interface:ProcessModel
Returns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.- Returns:
- The initial value of the state variable of the process Y(t=0).
-
getNumeraire
Description copied from interface:ProcessModel
Return the numeraire at a given time index. Note: The random variable returned is a defensive copy and may be modified.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.time
- The time t for which the numeraire N(t) should be returned.- Returns:
- The numeraire at the specified time as
RandomVariable
-
getDrift
public RandomVariable[] getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)Description copied from interface:ProcessModel
This method has to be implemented to return the drift, i.e. the coefficient vector
μ = (μ1, ..., μn) such that X = f(Y) and
dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
in an m-factor model. Here j denotes index of the component of the resulting process. Since the model is provided only on a time discretization, the method may also (should try to) return the drift as \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \).- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex
- The time index (related to the model times discretization).realizationAtTimeIndex
- The given realization at timeIndexrealizationPredictor
- The given realization attimeIndex+1
or null if no predictor is available.- Returns:
- The drift or average drift from timeIndex to timeIndex+1, i.e. \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \) (or a suitable approximation).
-
getFactorLoading
public RandomVariable[] getFactorLoading(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex)Description copied from interface:ProcessModel
This method has to be implemented to return the factor loadings, i.e. the coefficient vector
λj = (λ1,j, ..., λm,j) such that X = f(Y) and
dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
in an m-factor model. Here j denotes index of the component of the resulting process.- Parameters:
process
- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex
- The time index (related to the model times discretization).componentIndex
- The index j of the driven component.realizationAtTimeIndex
- The realization of X at the time corresponding to timeIndex (in order to implement local and stochastic volatlity models).- Returns:
- The factor loading for given factor and component.
-
getNumberOfComponents
public int getNumberOfComponents()Description copied from interface:ProcessModel
Returns the number of components- Returns:
- The number of components
-
getNumberOfFactors
public int getNumberOfFactors()Description copied from interface:ProcessModel
Returns the number of factors m, i.e., the number of independent Brownian drivers.- Returns:
- The number of factors.
-
getRandomVariableForConstant
Description copied from interface:ProcessModel
Return a random variable initialized with a constant using the models random variable factory.- Parameters:
value
- The constant value.- Returns:
- A new random variable initialized with a constant value.
-
getCloneWithModifiedData
public ProcessModel getCloneWithModifiedData(Map<String,Object> dataModified) throws CalculationExceptionDescription copied from interface:ProcessModel
Returns a clone of this model where the specified properties have been modified. Note that there is no guarantee that a model reacts on a specification of a properties in the parameter mapdataModified
. If data is provided which is ignored by the model no exception may be thrown.- Parameters:
dataModified
- Key-value-map of parameters to modify.- Returns:
- A clone of this model (or this model if no parameter was modified).
- Throws:
CalculationException
- Thrown when the model could not be created.
-
getDiscountCurveForForwardRate
- Returns:
- the discountCurveForForwardRate
-
getRiskFreeRate
- Returns:
- the riskFreeRate
-
getDiscountCurveForDiscountRate
- Returns:
- the discountCurveForDiscountRate
-
getDiscountRate
- Returns:
- the discountRate
-
getSigma
- Returns:
- the sigma
-
getTheta
- Returns:
- the theta
-
getNu
- Returns:
- the nu
-
toString
-