Package net.finmath.climate.models.dice.submodels

package net.finmath.climate.models.dice.submodels
Model components of the DICE model
Christian Fries
  • Class Summary
    The function that maps (relative) abatement coefficient to (relative) cost.
    State vector representing carbon concentration.
    The function \( T \mapsto \Omega(T) \) with \( T \) being the temperature above baseline, i.e., \( Omega(0) = 0 \).
    The function that models external emissions as GtCO2 / year \( (t) \mapsto E_{\mathrm{ex}}(t) .
    The function that maps time to emission intensity \( \sigma(t) \) (in kgCO2 / USD = GtCO2 / (10^12 USD)).
    the evolution of the capital (economy) \( K(t_{i+1}) = (1-delta) K(t_{i}) + investment \)
    The evolution of the carbon concentration M with a given emission E \( \mathrm{d}M(t) = \left( \Gamma_{M} M(t) + E(t) \right) \mathrm{d}t \).
    the evolution of the population (economy) \( L(t_{i+1}) = L(t_{i}) * (L(\infty)/L(t_{i})^{g} \) Note: The function depends on the time step size TODO Fix time stepping
    The evolution of the productivity (economy) \( A(t_{i+1}) = A(t_{i}) / (1 - ga * \exp(- deltaA * t)) \)
    The evolution of the temperature \( \mathrm{d}T(t) = \left( \Gamma_{T} T(t) + F(t) \right) \mathrm{d}t \).
    The function that maps CarbonConcentration (in GtC) and external forcing (in W/m^2) to forcing (in W/m^2).
    State vector representing temperature above pre-industrial level.