Interface ProcessModel

All Known Subinterfaces:
LIBORMarketModel, LIBORModel, TermStructureModel
All Known Implementing Classes:
AbstractProcessModel, BachelierModel, BlackScholesModel, BlackScholesModelWithCurves, DisplacedLognomalModel, HestonModel, HullWhiteModel, HullWhiteModelWithConstantCoeff, HullWhiteModelWithDirectSimulation, HullWhiteModelWithShiftExtension, InhomogeneousDisplacedLognomalModel, InhomogenousBachelierModel, LIBORMarketModelFromCovarianceModel, LIBORMarketModelStandard, LIBORMarketModelWithTenorRefinement, MertonModel, MonteCarloMultiAssetBlackScholesModel, MultiAssetBlackScholesModel, VarianceGammaModel

public interface ProcessModel
The interface for a model of a stochastic process X where X(t) = f(t,Y(t)) and
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] Here, μ and λj may depend on X, which allows to implement stochastic drifts (like in a LIBOR market model) of local volatility models.
Examples:
  • The Black Scholes model can be modeled by S = X = Y (i.e. f is the identity) and μ1 = r S and λ1,1 = σ S.
  • Alternatively, the Black Scholes model can be modeled by S = X = exp(Y) (i.e. f is exp) and μ1 = r - 0.5 σ σ and λ1,1 = σ.
Version:
2.0
Author:
Christian Fries
  • Method Details

    • getReferenceDate

      LocalDateTime getReferenceDate()
      Returns the model's date corresponding to the time discretization's \( t = 0 \). Note: Currently not all models provide a reference date. This will change in future versions.
      Returns:
      The model's date corresponding to the time discretization's \( t = 0 \).
    • getNumberOfComponents

      int getNumberOfComponents()
      Returns the number of components
      Returns:
      The number of components
    • applyStateSpaceTransform

      RandomVariable applyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)
      Applies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.
      Parameters:
      process - The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
      timeIndex - The time index (related to the model times discretization).
      componentIndex - The component index i.
      randomVariable - The state random variable Yi.
      Returns:
      New random variable holding the result of the state space transformation.
    • applyStateSpaceTransformInverse

      default RandomVariable applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)
      Applies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.
      Parameters:
      process - The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
      timeIndex - The time index (related to the model times discretization).
      componentIndex - The component index i.
      randomVariable - The state random variable Xi.
      Returns:
      New random variable holding the result of the state space transformation.
    • getInitialState

      RandomVariable[] getInitialState(MonteCarloProcess process)
      Returns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.
      Parameters:
      process - The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
      Returns:
      The initial value of the state variable of the process Y(t=0).
    • getNumeraire

      RandomVariable getNumeraire(MonteCarloProcess process, double time) throws CalculationException
      Return the numeraire at a given time index. Note: The random variable returned is a defensive copy and may be modified.
      Parameters:
      process - The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
      time - The time t for which the numeraire N(t) should be returned.
      Returns:
      The numeraire at the specified time as RandomVariable
      Throws:
      CalculationException - Thrown if the valuation fails, specific cause may be available via the cause() method.
    • getDrift

      RandomVariable[] getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)
      This method has to be implemented to return the drift, i.e. the coefficient vector
      μ = (μ1, ..., μn) such that X = f(Y) and
      dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
      in an m-factor model. Here j denotes index of the component of the resulting process. Since the model is provided only on a time discretization, the method may also (should try to) return the drift as \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \).
      Parameters:
      process - The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
      timeIndex - The time index (related to the model times discretization).
      realizationAtTimeIndex - The given realization at timeIndex
      realizationPredictor - The given realization at timeIndex+1 or null if no predictor is available.
      Returns:
      The drift or average drift from timeIndex to timeIndex+1, i.e. \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \) (or a suitable approximation).
    • getNumberOfFactors

      int getNumberOfFactors()
      Returns the number of factors m, i.e., the number of independent Brownian drivers.
      Returns:
      The number of factors.
    • getFactorLoading

      RandomVariable[] getFactorLoading(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex)
      This method has to be implemented to return the factor loadings, i.e. the coefficient vector
      λj = (λ1,j, ..., λm,j) such that X = f(Y) and
      dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
      in an m-factor model. Here j denotes index of the component of the resulting process.
      Parameters:
      process - The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
      timeIndex - The time index (related to the model times discretization).
      componentIndex - The index j of the driven component.
      realizationAtTimeIndex - The realization of X at the time corresponding to timeIndex (in order to implement local and stochastic volatlity models).
      Returns:
      The factor loading for given factor and component.
    • getRandomVariableForConstant

      RandomVariable getRandomVariableForConstant(double value)
      Return a random variable initialized with a constant using the models random variable factory.
      Parameters:
      value - The constant value.
      Returns:
      A new random variable initialized with a constant value.
    • getCloneWithModifiedData

      ProcessModel getCloneWithModifiedData(Map<String,Object> dataModified) throws CalculationException
      Returns a clone of this model where the specified properties have been modified. Note that there is no guarantee that a model reacts on a specification of a properties in the parameter map dataModified. If data is provided which is ignored by the model no exception may be thrown.
      Parameters:
      dataModified - Key-value-map of parameters to modify.
      Returns:
      A clone of this model (or this model if no parameter was modified).
      Throws:
      CalculationException - Thrown when the model could not be created.