Module net.finmath.lib
Class MonteCarloMultiAssetBlackScholesModel
java.lang.Object
net.finmath.montecarlo.model.AbstractProcessModel
net.finmath.montecarlo.assetderivativevaluation.MonteCarloMultiAssetBlackScholesModel
- All Implemented Interfaces:
Model,AssetModelMonteCarloSimulationModel,ProcessModel,MonteCarloSimulationModel
public class MonteCarloMultiAssetBlackScholesModel
extends AbstractProcessModel
implements AssetModelMonteCarloSimulationModel
This class implements a multi-asset Black Schole Model as Monte-Carlo simulation implementing
AssetModelMonteCarloSimulationModel.
The model is
\[
dS_{i} = r S_{i} dt + \sigma_{i} S_{i} dW_{i}, \quad S_{i}(0) = S_{i,0},
\]
\[
dN = r N dt, \quad N(0) = N_{0},
\]
\[
dW_{i} dW_{j} = \rho_{i,j} dt,
\]
The class provides the model of \( S_{i} \) to an MonteCarloProcess via the specification of
\( f = exp \), \( \mu_{i} = r - \frac{1}{2} \sigma_{i}^2 \), \( \lambda_{i,j} = \sigma_{i} g_{i,j} \), i.e.,
of the SDE
\[
dX_{i} = \mu_{i} dt + \lambda_{i,j} dW, \quad X_{i}(0) = \log(S_{i,0}),
\]
with \( S = f(X) \). See MonteCarloProcess for the notation.- Version:
- 1.1
- Author:
- Christian Fries, Roland Bachl
- See Also:
The interface for numerical schemes.,The interface for models provinding parameters to numerical schemes.
-
Constructor Summary
ConstructorsConstructorDescriptionMonteCarloMultiAssetBlackScholesModel(BrownianMotion brownianMotion, double[] initialValues, double riskFreeRate, double[] volatilities, double[][] correlations)Create a Monte-Carlo simulation using given time discretization.MonteCarloMultiAssetBlackScholesModel(RandomVariableFactory randomVariableFactory, BrownianMotion brownianMotion, double[] initialValues, double riskFreeRate, double[][] factorLoadings)Create a Monte-Carlo simulation using given time discretization.MonteCarloMultiAssetBlackScholesModel(TimeDiscretization timeDiscretization, int numberOfPaths, double[] initialValues, double riskFreeRate, double[] volatilities, double[][] correlations)Create a Monte-Carlo simulation using given time discretization.MonteCarloMultiAssetBlackScholesModel(TimeDiscretization timeDiscretization, int numberOfPaths, int seed, double[] initialValues, double riskFreeRate, double[] volatilities, double[][] correlations)Create a Monte-Carlo simulation using given time discretization. -
Method Summary
Modifier and TypeMethodDescriptionapplyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Applies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Applies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.getAssetValue(double time, int assetIndex)Returns the random variable representing the asset's value at a given time for a given asset.getAssetValue(int timeIndex, int assetIndex)Returns the random variable representing the asset's value at a given time for a given asset.getCloneWithModifiedData(Map<String,Object> dataModified)Create a clone of this simulation modifying some of its properties (if any).getCloneWithModifiedSeed(int seed)Create a clone of the object implementingAssetModelMonteCarloSimulationModelusing a different Monte-Carlo seed.double[][]Returns the volatility parameters of this model.getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)This method has to be implemented to return the drift, i.e.getFactorLoading(MonteCarloProcess process, int timeIndex, int component, RandomVariable[] realizationAtTimeIndex)This method has to be implemented to return the factor loadings, i.e.double[][]Returns the factorLoadings parameters of this model.getInitialState(MonteCarloProcess process)Returns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.getMonteCarloWeights(double time)This method returns the weights of a weighted Monte Carlo method (the probability density).getMonteCarloWeights(int timeIndex)This method returns the weights of a weighted Monte Carlo method (the probability density).intReturns the number of asset price processes.intReturns the number of componentsintReturns the number of factors m, i.e., the number of independent Brownian drivers.intReturns the number of paths.getNumeraire(double time)Returns the numeraire associated with the valuation measure used by this model.getNumeraire(int timeIndex)Returns the numeraire associated with the valuation measure used by this model.getNumeraire(MonteCarloProcess process, double time)Return the numeraire at a given time index.getRandomVariableForConstant(double value)Returns a random variable which is initialized to a constant, but has exactly the same number of paths or discretization points as the ones used by thisMonteCarloSimulationModel.doubleReturns the risk free rate parameter of this model.doublegetTime(int timeIndex)Returns the time for a given time index.Returns the timeDiscretizationFromArray.intgetTimeIndex(double time)Returns the time index for a given time.double[]Returns the volatility parameters of this model.toString()Methods inherited from class net.finmath.montecarlo.model.AbstractProcessModel
getInitialValue, getReferenceDateMethods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface net.finmath.montecarlo.MonteCarloSimulationModel
getReferenceDate
-
Constructor Details
-
MonteCarloMultiAssetBlackScholesModel
public MonteCarloMultiAssetBlackScholesModel(RandomVariableFactory randomVariableFactory, BrownianMotion brownianMotion, double[] initialValues, double riskFreeRate, double[][] factorLoadings)Create a Monte-Carlo simulation using given time discretization.- Parameters:
randomVariableFactory- The RandomVariableFactory used to construct model parameters as random variables.brownianMotion- The Brownian motion to be used for the numerical scheme.initialValues- Spot values.riskFreeRate- The risk free rate.factorLoadings- The matrix of factor loadings, where factorLoadings[underlyingIndex][factorIndex] is the coefficient of the Brownian driver factorIndex used for the underlying underlyingIndex.
-
MonteCarloMultiAssetBlackScholesModel
public MonteCarloMultiAssetBlackScholesModel(BrownianMotion brownianMotion, double[] initialValues, double riskFreeRate, double[] volatilities, double[][] correlations)Create a Monte-Carlo simulation using given time discretization.- Parameters:
brownianMotion- The Brownian motion to be used for the numerical scheme.initialValues- Spot values.riskFreeRate- The risk free rate.volatilities- The log volatilities.correlations- A correlation matrix.
-
MonteCarloMultiAssetBlackScholesModel
public MonteCarloMultiAssetBlackScholesModel(TimeDiscretization timeDiscretization, int numberOfPaths, double[] initialValues, double riskFreeRate, double[] volatilities, double[][] correlations)Create a Monte-Carlo simulation using given time discretization.- Parameters:
timeDiscretization- The time discretization.numberOfPaths- The number of Monte-Carlo path to be used.initialValues- Spot values.riskFreeRate- The risk free rate.volatilities- The log volatilities.correlations- A correlation matrix.
-
MonteCarloMultiAssetBlackScholesModel
public MonteCarloMultiAssetBlackScholesModel(TimeDiscretization timeDiscretization, int numberOfPaths, int seed, double[] initialValues, double riskFreeRate, double[] volatilities, double[][] correlations)Create a Monte-Carlo simulation using given time discretization.- Parameters:
timeDiscretization- The time discretization.numberOfPaths- The number of Monte-Carlo path to be used.seed- The seed to be used.initialValues- Spot values.riskFreeRate- The risk free rate.volatilities- The log volatilities.correlations- A correlation matrix.
-
-
Method Details
-
getInitialState
Description copied from interface:ProcessModelReturns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.- Specified by:
getInitialStatein interfaceProcessModel- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.- Returns:
- The initial value of the state variable of the process Y(t=0).
-
getDrift
public RandomVariable[] getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)Description copied from interface:ProcessModelThis method has to be implemented to return the drift, i.e. the coefficient vector
μ = (μ1, ..., μn) such that X = f(Y) and
dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
in an m-factor model. Here j denotes index of the component of the resulting process. Since the model is provided only on a time discretization, the method may also (should try to) return the drift as \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \).- Specified by:
getDriftin interfaceProcessModel- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).realizationAtTimeIndex- The given realization at timeIndexrealizationPredictor- The given realization attimeIndex+1or null if no predictor is available.- Returns:
- The drift or average drift from timeIndex to timeIndex+1, i.e. \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \) (or a suitable approximation).
-
getFactorLoading
public RandomVariable[] getFactorLoading(MonteCarloProcess process, int timeIndex, int component, RandomVariable[] realizationAtTimeIndex)Description copied from interface:ProcessModelThis method has to be implemented to return the factor loadings, i.e. the coefficient vector
λj = (λ1,j, ..., λm,j) such that X = f(Y) and
dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
in an m-factor model. Here j denotes index of the component of the resulting process.- Specified by:
getFactorLoadingin interfaceProcessModel- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).component- The index j of the driven component.realizationAtTimeIndex- The realization of X at the time corresponding to timeIndex (in order to implement local and stochastic volatlity models).- Returns:
- The factor loading for given factor and component.
-
applyStateSpaceTransform
public RandomVariable applyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Description copied from interface:ProcessModelApplies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.- Specified by:
applyStateSpaceTransformin interfaceProcessModel- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).componentIndex- The component index i.randomVariable- The state random variable Yi.- Returns:
- New random variable holding the result of the state space transformation.
-
applyStateSpaceTransformInverse
public RandomVariable applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Description copied from interface:ProcessModelApplies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.- Specified by:
applyStateSpaceTransformInversein interfaceProcessModel- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).componentIndex- The component index i.randomVariable- The state random variable Xi.- Returns:
- New random variable holding the result of the state space transformation.
-
getAssetValue
Description copied from interface:AssetModelMonteCarloSimulationModelReturns the random variable representing the asset's value at a given time for a given asset.- Specified by:
getAssetValuein interfaceAssetModelMonteCarloSimulationModel- Parameters:
time- Simulation timeassetIndex- Index of the asset (0 for a single asset model)- Returns:
- The asset process as seen on simulation time
- Throws:
CalculationException- Thrown if the valuation fails, specific cause may be available via thecause()method.
-
getAssetValue
Description copied from interface:AssetModelMonteCarloSimulationModelReturns the random variable representing the asset's value at a given time for a given asset.- Specified by:
getAssetValuein interfaceAssetModelMonteCarloSimulationModel- Parameters:
timeIndex- Index of simulation timeassetIndex- Index of the asset (0 for a single asset model)- Returns:
- The asset process as seen on simulation time
- Throws:
CalculationException- Thrown if the valuation fails, specific cause may be available via thecause()method.
-
getMonteCarloWeights
Description copied from interface:MonteCarloSimulationModelThis method returns the weights of a weighted Monte Carlo method (the probability density).- Specified by:
getMonteCarloWeightsin interfaceMonteCarloSimulationModel- Parameters:
time- Time at which the process should be observed- Returns:
- A vector of positive weights which sums up to one
- Throws:
CalculationException- Thrown if the valuation fails, specific cause may be available via thecause()method.
-
getNumeraire
Description copied from interface:ProcessModelReturn the numeraire at a given time index. Note: The random variable returned is a defensive copy and may be modified.- Specified by:
getNumerairein interfaceProcessModel- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.time- The time t for which the numeraire N(t) should be returned.- Returns:
- The numeraire at the specified time as
RandomVariable
-
getNumeraire
Description copied from interface:AssetModelMonteCarloSimulationModelReturns the numeraire associated with the valuation measure used by this model.- Specified by:
getNumerairein interfaceAssetModelMonteCarloSimulationModel- Parameters:
timeIndex- The time index (associated with this models time discretization).- Returns:
- The numeraire associated with the valuation measure used by this model.
- Throws:
CalculationException- Thrown if calculation of numeraire fails.
-
getNumeraire
Description copied from interface:AssetModelMonteCarloSimulationModelReturns the numeraire associated with the valuation measure used by this model.- Specified by:
getNumerairein interfaceAssetModelMonteCarloSimulationModel- Parameters:
time- The time for which the numeraire is requested.- Returns:
- The numeraire associated with the valuation measure used by this model.
- Throws:
CalculationException- Thrown if calculation of numeraire fails.
-
getRandomVariableForConstant
Description copied from interface:MonteCarloSimulationModelReturns a random variable which is initialized to a constant, but has exactly the same number of paths or discretization points as the ones used by thisMonteCarloSimulationModel.- Specified by:
getRandomVariableForConstantin interfaceMonteCarloSimulationModel- Specified by:
getRandomVariableForConstantin interfaceProcessModel- Parameters:
value- The constant value to be used for initialized the random variable.- Returns:
- A new random variable.
-
getNumberOfComponents
public int getNumberOfComponents()Description copied from interface:ProcessModelReturns the number of components- Specified by:
getNumberOfComponentsin interfaceProcessModel- Returns:
- The number of components
-
getNumberOfAssets
public int getNumberOfAssets()Description copied from interface:AssetModelMonteCarloSimulationModelReturns the number of asset price processes.- Specified by:
getNumberOfAssetsin interfaceAssetModelMonteCarloSimulationModel- Returns:
- The number of asset price processes
-
toString
-
getRiskFreeRate
public double getRiskFreeRate()Returns the risk free rate parameter of this model.- Returns:
- Returns the riskFreeRate.
-
getFactorLoadings
public double[][] getFactorLoadings()Returns the factorLoadings parameters of this model.- Returns:
- Returns the factorLoadings.
-
getVolatilities
public double[] getVolatilities()Returns the volatility parameters of this model.- Returns:
- Returns the volatilities.
-
getCorrelations
public double[][] getCorrelations()Returns the volatility parameters of this model.- Returns:
- Returns the volatilities.
-
getNumberOfPaths
public int getNumberOfPaths()Returns the number of paths.- Specified by:
getNumberOfPathsin interfaceMonteCarloSimulationModel- Returns:
- The number of paths.
- See Also:
MonteCarloProcess.getNumberOfPaths()
-
getCloneWithModifiedData
public MonteCarloMultiAssetBlackScholesModel getCloneWithModifiedData(Map<String,Object> dataModified)Description copied from interface:AssetModelMonteCarloSimulationModelCreate a clone of this simulation modifying some of its properties (if any).- Specified by:
getCloneWithModifiedDatain interfaceAssetModelMonteCarloSimulationModel- Specified by:
getCloneWithModifiedDatain interfaceMonteCarloSimulationModel- Specified by:
getCloneWithModifiedDatain interfaceProcessModel- Parameters:
dataModified- The data which should be changed in the new model- Returns:
- Returns a clone of this model, with some data modified (then it is no longer a clone :-)
-
getCloneWithModifiedSeed
Description copied from interface:AssetModelMonteCarloSimulationModelCreate a clone of the object implementingAssetModelMonteCarloSimulationModelusing a different Monte-Carlo seed.- Specified by:
getCloneWithModifiedSeedin interfaceAssetModelMonteCarloSimulationModel- Parameters:
seed- The seed of the underlying random number generator.- Returns:
- Returns a clone of this model except for a modified Monte-Carlo seed.
-
getTimeDiscretization
Description copied from interface:MonteCarloSimulationModelReturns the timeDiscretizationFromArray.- Specified by:
getTimeDiscretizationin interfaceMonteCarloSimulationModel- Returns:
- Returns the timeDiscretizationFromArray.
-
getTime
public double getTime(int timeIndex)Description copied from interface:MonteCarloSimulationModelReturns the time for a given time index.- Specified by:
getTimein interfaceMonteCarloSimulationModel- Parameters:
timeIndex- Time index- Returns:
- Returns the time for a given time index.
-
getTimeIndex
public int getTimeIndex(double time)Description copied from interface:MonteCarloSimulationModelReturns the time index for a given time.- Specified by:
getTimeIndexin interfaceMonteCarloSimulationModel- Parameters:
time- The time.- Returns:
- Returns the time index for a given time.
-
getMonteCarloWeights
Description copied from interface:MonteCarloSimulationModelThis method returns the weights of a weighted Monte Carlo method (the probability density).- Specified by:
getMonteCarloWeightsin interfaceMonteCarloSimulationModel- Parameters:
timeIndex- Time index at which the process should be observed- Returns:
- A vector of positive weights which sums up to one
- Throws:
CalculationException- Thrown if the valuation fails, specific cause may be available via thecause()method.
-
getNumberOfFactors
public int getNumberOfFactors()Description copied from interface:ProcessModelReturns the number of factors m, i.e., the number of independent Brownian drivers.- Specified by:
getNumberOfFactorsin interfaceProcessModel- Returns:
- The number of factors.
-