Uses of Class
net.finmath.optimizer.LevenbergMarquardt
Packages that use LevenbergMarquardt
Package
Description
This package provides classes with numerical algorithm for optimization of
an objective function and a factory to easy construction of the optimizers.
-
Uses of LevenbergMarquardt in net.finmath.optimizer
Methods in net.finmath.optimizer that return LevenbergMarquardtModifier and TypeMethodDescriptionLevenbergMarquardt.clone()
Create a clone of this LevenbergMarquardt optimizer.LevenbergMarquardt.getCloneWithModifiedTargetValues(double[] newTargetVaues, double[] newWeights, boolean isUseBestParametersAsInitialParameters)
Create a clone of this LevenbergMarquardt optimizer with a new vector for the target values and weights.LevenbergMarquardt.getCloneWithModifiedTargetValues(List<Number> newTargetVaues, List<Number> newWeights, boolean isUseBestParametersAsInitialParameters)
Create a clone of this LevenbergMarquardt optimizer with a new vector for the target values and weights.LevenbergMarquardt.setErrorTolerance(double errorTolerance)
Set the error tolerance.LevenbergMarquardt.setInitialParameters(double[] initialParameters)
Set the initial parameters for the solver.LevenbergMarquardt.setLambda(double lambda)
Set the parameter λ used in the Tikhonov-like regularization of the Hessian matrix, that is the \( \lambda \) in \( H + \lambda \diag H \).LevenbergMarquardt.setMaxIteration(int maxIteration)
Set the maximum number of iterations to be performed until the solver gives up.LevenbergMarquardt.setParameterSteps(double[] parameterSteps)
Set the parameter step for the solver.LevenbergMarquardt.setTargetValues(double[] targetValues)
Set the target values for the solver.LevenbergMarquardt.setWeights(double[] weights)
Set the weight for the objective function.