Module net.finmath.lib
Class BlackScholesHedgedPortfolio
java.lang.Object
net.finmath.montecarlo.AbstractMonteCarloProduct
net.finmath.montecarlo.assetderivativevaluation.products.AbstractAssetMonteCarloProduct
net.finmath.montecarlo.assetderivativevaluation.products.BlackScholesHedgedPortfolio
- All Implemented Interfaces:
Product,AssetMonteCarloProduct,MonteCarloProduct
This class implements a delta and delta-gamma hedged portfolio of an European option (a hedge simulator).
The hedge is done under the assumption of a Black Scholes Model (even if the pricing model is a different one).
In case of the gamma hedge and the vega hedge, note that we make the assumption that the
market trades these option according to Black-Scholes parameters assumed in hedging.
While this is a simple model, it is to some extend reasonable, when we assume that the
hedge is done by calculating delta from a calibrated model (where the risk free rate and
the volatility are "market implied").
That said, this class evaluates the hedge portfolio given that the market implies a given
risk free rate and volatility, while the underlying follows a given (possibly different) stochastic
process.
The
getValue-method returns the random variable \( \Pi(t) \) representing the value
of the replication portfolio \( \Pi(t) = \phi_0(t) N(t) + \phi_1(t) S(t) + \psi_0(t) C(t) \).- Version:
- 1.4
- Author:
- Christian Fries
-
Nested Class Summary
Nested Classes -
Constructor Summary
ConstructorsConstructorDescriptionBlackScholesHedgedPortfolio(double maturity, double strike, double riskFreeRate, double volatility)Construction of a hedge portfolio assuming a Black-Scholes model for the hedge ratios.BlackScholesHedgedPortfolio(double maturity, double strike, double riskFreeRate, double volatility, double hedgeOptionMaturity, double hedgeOptionStrike, BlackScholesHedgedPortfolio.HedgeStrategy hedgeStrategy)Construction of a delta-gamma hedge portfolio assuming a Black-Scholes model. -
Method Summary
Modifier and TypeMethodDescriptiongetValue(double evaluationTime, AssetModelMonteCarloSimulationModel model)Methods inherited from class net.finmath.montecarlo.assetderivativevaluation.products.AbstractAssetMonteCarloProduct
getValueMethods inherited from class net.finmath.montecarlo.AbstractMonteCarloProduct
getCurrency, getValue, getValue, getValues, getValues, getValues, getValuesForModifiedData, getValuesForModifiedData, getValuesForModifiedData, getValuesForModifiedData, toString
-
Constructor Details
-
BlackScholesHedgedPortfolio
public BlackScholesHedgedPortfolio(double maturity, double strike, double riskFreeRate, double volatility, double hedgeOptionMaturity, double hedgeOptionStrike, BlackScholesHedgedPortfolio.HedgeStrategy hedgeStrategy)Construction of a delta-gamma hedge portfolio assuming a Black-Scholes model.- Parameters:
maturity- Maturity of the option we wish to replicate.strike- Strike of the option we wish to replicate.riskFreeRate- Model riskFreeRate assumption for our delta hedge.volatility- Model volatility assumption for our delta hedge.hedgeOptionMaturity- Maturity of the option used in the hedge portfolio (to hedge gamma).hedgeOptionStrike- Strike of the option used in the hedge portfolio (to hedge gamma).hedgeStrategy- Specification of the hedge strategy to be used (delta, delta-gamma, etc.).
-
BlackScholesHedgedPortfolio
public BlackScholesHedgedPortfolio(double maturity, double strike, double riskFreeRate, double volatility)Construction of a hedge portfolio assuming a Black-Scholes model for the hedge ratios.- Parameters:
maturity- Maturity of the option we wish to replicate.strike- Strike of the option we wish to replicate.riskFreeRate- Model riskFreeRate assumption for our delta hedge.volatility- Model volatility assumption for our delta hedge.
-
-
Method Details
-
getValue
public RandomVariable getValue(double evaluationTime, AssetModelMonteCarloSimulationModel model) throws CalculationException- Specified by:
getValuein interfaceAssetMonteCarloProduct- Specified by:
getValuein classAbstractAssetMonteCarloProduct- Throws:
CalculationException
-