java.lang.Object
net.finmath.montecarlo.VarianceGammaProcess
- All Implemented Interfaces:
Serializable,IndependentIncrements
Implementation of a time-discrete n-dimensional Variance Gamma process via Brownian subordination through
a Gamma Process.
To simulate the Variance Gamma process with paramters \( (\sigma,\theta,\nu) \) we proceed in two steps:
- we simulate the path of a GammaProcess with parameters \( \frac{1}{\nu} and \nu \)
- use the GammaProcess as a subordinator for a Brownian motion with drift
- Version:
- 1.0
- Author:
- Alessandro Gnoatto
- See Also:
- Serialized Form
-
Constructor Summary
ConstructorsConstructorDescriptionVarianceGammaProcess(double sigma, double nu, double theta, TimeDiscretization timeDiscretization, int numberOfFactors, int numberOfPaths, int seed) -
Method Summary
Modifier and TypeMethodDescriptiongetCloneWithModifiedSeed(int seed)Return a new object implementing BrownianMotion having the same specifications as this object but a different seed for the random number generator.getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)Return a new object implementing BrownianMotion having the same specifications as this object but a different time discretization.getIncrement(int timeIndex, int factor)Return the increment for a given timeIndex and given factor.doublegetNu()intReturns the number of factors.intReturns the number of paths.getRandomVariableForConstant(double value)Returns a random variable which is initialized to a constant, but has exactly the same number of paths or discretization points as the ones used by this BrownianMotion.doublegetSigma()doublegetTheta()Returns the time discretization used for this set of time-discrete Brownian increments.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface net.finmath.montecarlo.IndependentIncrements
getIncrement
-
Constructor Details
-
VarianceGammaProcess
public VarianceGammaProcess(double sigma, double nu, double theta, TimeDiscretization timeDiscretization, int numberOfFactors, int numberOfPaths, int seed)
-
-
Method Details
-
getIncrement
Description copied from interface:IndependentIncrementsReturn the increment for a given timeIndex and given factor. The method returns the random variable Δ Xj(ti) := Xj(ti+1)-X(ti) for the given time index i and a given factor (index) j- Specified by:
getIncrementin interfaceIndependentIncrements- Parameters:
timeIndex- The time index (corresponding to the this class's time discretization)factor- The index of the factor (independent scalar increment)- Returns:
- The factor (component) of the increments (a random variable)
-
getSigma
public double getSigma()- Returns:
- the sigma
-
getNu
public double getNu()- Returns:
- the nu
-
getTheta
public double getTheta()- Returns:
- the theta
-
getBrownianMotion
- Returns:
- the Brownian motion
-
getGammaProcess
- Returns:
- the Gamma subordinator
-
getTimeDiscretization
Description copied from interface:IndependentIncrementsReturns the time discretization used for this set of time-discrete Brownian increments.- Specified by:
getTimeDiscretizationin interfaceIndependentIncrements- Returns:
- The time discretization used for this set of time-discrete Brownian increments.
-
getNumberOfFactors
public int getNumberOfFactors()Description copied from interface:IndependentIncrementsReturns the number of factors.- Specified by:
getNumberOfFactorsin interfaceIndependentIncrements- Returns:
- The number of factors.
-
getNumberOfPaths
public int getNumberOfPaths()Description copied from interface:IndependentIncrementsReturns the number of paths.- Specified by:
getNumberOfPathsin interfaceIndependentIncrements- Returns:
- The number of paths.
-
getRandomVariableForConstant
Description copied from interface:IndependentIncrementsReturns a random variable which is initialized to a constant, but has exactly the same number of paths or discretization points as the ones used by this BrownianMotion.- Specified by:
getRandomVariableForConstantin interfaceIndependentIncrements- Parameters:
value- The constant value to be used for initialized the random variable.- Returns:
- A new random variable.
-
getCloneWithModifiedSeed
Description copied from interface:IndependentIncrementsReturn a new object implementing BrownianMotion having the same specifications as this object but a different seed for the random number generator. This method is useful if you like to make Monte-Carlo samplings by changing the seed.- Specified by:
getCloneWithModifiedSeedin interfaceIndependentIncrements- Parameters:
seed- New value for the seed.- Returns:
- New object implementing BrownianMotion.
-
getCloneWithModifiedTimeDiscretization
public IndependentIncrements getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)Description copied from interface:IndependentIncrementsReturn a new object implementing BrownianMotion having the same specifications as this object but a different time discretization.- Specified by:
getCloneWithModifiedTimeDiscretizationin interfaceIndependentIncrements- Parameters:
newTimeDiscretization- New time discretization- Returns:
- New object implementing BrownianMotion.
-